
© Copyright 1991, 1992 National Instruments Corporation.
All Rights Reserved.

NI-488® and NI-488.2™

Subroutines for NKR BASIC

August 1992 Edition

Part Number 320348-01

National Instruments Corporate Headquarters
6504 Bridge Point Parkway
Austin, TX 78730-5039
(512) 794-0100
(800) 433-3488 (toll-free U.S. and Canada)
Technical support fax: (512) 794-5678

Branch Offices:
Australia 03 879 9422, Belgium 02 757 00 20, Canada 519 622 9310,
Denmark 45 76 73 22, Finland 90 524566, France 1 48 65 33 70,
Germany 089 714 50 93, Italy 02 48301892, Japan 03 3788 1921,
Netherlands 01720 45761, Norway 03 846866, Spain 91 896 0675,
Sweden 08 984970, Switzerland 056 27 00 20, U.K. 0635 523545

Limited Warranty

The media on which you receive National Instruments software are
warranted not to fail to execute programming instructions, due to defects in
materials and workmanship, for a period of 90 days from date of shipment,
as evidenced by receipts or other documentation. National Instruments will,
at its option, repair or replace software media that do not execute
programming instructions if National Instruments receives notice of such
defects during the warranty period. National Instruments does not warrant
that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the
factory and clearly marked on the outside of the package before any
equipment will be accepted for warranty work. National Instruments will
pay the shipping costs of returning to the owner parts which are covered by
warranty.

National Instruments believes that the information in this manual is
accurate. The document has been carefully reviewed for technical accuracy.
In the event that technical or typographical errors exist, National
Instruments reserves the right to make changes to subsequent editions of
this document without prior notice to holders of this edition. The reader
should consult National Instruments if errors are suspected. In no event
shall National Instruments be liable for any damages arising out of or
related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO
WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS
ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. CUSTOMER'S RIGHT TO RECOVER DAMAGES
CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL
INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE
PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE
LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS,
USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the
liability of National Instruments will apply regardless of the form of action,
whether in contract or tort, including negligence. Any action against
National Instruments must be brought within one year after the cause of
action accrues. National Instruments shall not be liable for any delay in
performance due to causes beyond its reasonable control. The warranty
provided herein does not cover damages, defects, malfunctions, or service
failures caused by owner's failure to follow the National Instruments
installation, operation, or maintenance instructions; owner's modification of

the product; owner's abuse, misuse, or negligent acts; and power failure or
surges, fire, flood, accident, actions of third parties, or other events outside
reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or
transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in
whole or in part, without the prior written consent of National Instruments
Corporation.

Trademarks

NI-488® and NI-488.2™ are trademarks of National Instruments
Corporation.

Product and company names listed are trademarks or trade names of their
respective companies.

© National Instruments Corp. v NKR BASIC

Preface

This manual contains information for programming the NI-488.2 routines
and the NI-488 functions in NKR BASIC. The term NKR BASIC, as used
in this manual, refers to NKR BASIC for MS-DOS.

This manual assumes that the driver is installed and that you are familiar
with the driver operation. Programming knowledge in NKR BASIC and
familiarity with the compiler are also assumed.

Organization of This Manual

This manual is organized as follows:

• Chapter 1, General Information, lists the files relevant to programming
in NKR BASIC, contains programming preparations, discusses how to
use the NI-488.2 routine and NI-488 function examples, and
summarizes the calls that will be explained at length in Chapter 2 and
Chapter 3.

• Chapter 2, NI-488.2 Routine Descriptions, contains a detailed
description of each NI-488.2 routine with example programs. The
routines are listed alphabetically for easy reference.

• Chapter 3, NI-488 Function Descriptions , contains a detailed
description of each NI-488 function with example programs. The
descriptions are listed alphabetically for easy reference.

• Appendix A, Multiline Interface Messages , contains an interface
message reference list, which describes the mnemonics and messages
that correspond to the interface functions.

• Appendix B, Applications Monitor , introduces you to the Applications
Monitor, a resident program that is useful in debugging sequences of
GPIB calls from within your application.

• Appendix C, Customer Communication, contains forms you can use to
request help from National Instruments or to comment on our products
and manuals.

Preface

NKR BASIC vi © National Instruments Corp.

Conventions Used in This Manual

The following conventions are used to distinguish elements of text
throughout this manual.

italic Italic text denotes emphasis, a cross reference, or
an introduction to a key concept.

monospace Lowercase text in this font denotes text or
characters that are to be literally input from the
keyboard, sections of code, programming
examples, and syntax examples. This font is also
used for the proper names of disk drives, paths,
directories, programs, subprograms, subroutines,
device names, functions, variables, filenames,
and extensions, and for statements and comments
taken from program code.

<> Angle brackets enclose the name of a key on the
keyboard–for example, <PageDown>.

<Control> Key names are capitalized.

In this manual, the term Software Reference Manual is used to refer to the
NI-488.2 Software Reference Manual for MS-DOS.

Abbreviations

The following abbreviations for units of measure are used in this
manual:

> greater than
≥ greater than or equal to
hex hexadecimal
< lesser than
msec millisecond
µsec microsecond
nsec nanosecond

Preface

© National Instruments Corp. vii NKR BASIC

Acronyms

The following acronyms are used in this manual:

ANSI American National Standards Institute
ASCII American Standard Code for Information

Exchange
CIC Controller-In-Charge
DIO digital input/output
DMA direct memory access
EOI end or identify
EOS end of string
GPIB General Purpose Interface (IEEE 488) bus
IEEE 488 Institute of Electrical and Electronic Engineers

Standard 488.1-1987, which defines the GPIB
I/O input/output
PC personal computer
VAC volts alternating current

Mnemonics

The following mnemonics are used in this manual:

CIDS Controller Idle State
DAV Data Valid
IDY Identify
NDAC Not Data Accepted
NRFD Not Ready For Data
REN Remote Enable
SRQ Service Request

Preface

NKR BASIC viii © National Instruments Corp.

Related Documents

The following documents contain information that you may find helpful as
you read this manual:

• NI-488.2 MS-DOS Software Reference Manual , part number 320282-01

• ANSI/IEEE Standard 488.1-1987, IEEE Standard Digital Interface for
Programmable Instrumentation

• ANSI/IEEE Standard 488.2-1987, IEEE Standard Codes, Formats,
Protocals, and Common Commands

Customer Communication

National Instruments wants to receive your comments on our products and
manuals. We are interested in the applications you develop with our
products, and we want to help if you have problems with them. To make it
easy for you to contact us, this manual contains comment and configuration
forms for you to complete. These forms are in Appendix C, Customer
Communication , at the end of this manual.

© National Instruments Corp. ix NKR BASIC

Contents

Chapter 1
General Information ..1-1

NKR BASIC Files ..1-1
Programming Preparations ... 1-1
Testing the Status Word ... 1-2

Count Variable – ibcnt ... 1-2
NKR BASIC NI-488 I/O Calls ... 1-3
Using NI-488.2 Routine and NI-488 Function Examples1-3

Dynamic Reconfiguration of Board and Device
Characteristics ..1-8

Chapter 2
NI-488.2 Routine Descriptions ... 2-1

AllSpoll ... 2-2
DevClear ... 2-3
DevClearList ... 2-4
EnableLocal ..2-5
EnableRemote... 2-6
FindLstn..2-7
FindRQS ... 2-9
PassControl ... 2-10
PPoll ... 2-11
PPollConfig...2-12
PPollUnconfig... 2-13
RcvRespMsg... 2-14
ReadStatusByte... 2-15
Receive ... 2-16
ReceiveSetup ..2-17
ResetSys ... 2-18
Send ..2-19
SendCmds... 2-20
SendDataBytes ... 2-21
SendIFC ..2-22
SendList ..2-23
SendLLO...2-25
SendSetup ... 2-26
SetRWLS ..2-27
TestSRQ ... 2-28

Contents

NKR BASIC x © National Instruments Corp.

TestSys ... 2-29
Trigger ..2-30
TriggerList ..2-31
WaitSRQ... 2-32
NI-488.2 Programming Example ... 2-33
NKR BASIC Example Program – NI-488.2 Routines 2-35

Chapter 3
NI-488 Function Descriptions ..3-1

IBBNA..3-2
IBCAC ..3-3
IBCLR... 3-5
IBCMD ... 3-6
IBCMDA ..3-9
IBCONFIG ... 3-11
IBDEV ..3-19
IBDMA... 3-21
IBEOS... 3-22
IBEOT... 3-26
IBFIND... 3-28
IBGTS... 3-30
IBIST ..3-32
IBLINES... 3-34
IBLN... 3-35
IBLOC ..3-37
IBONL ..3-39
IBPAD ..3-41
IBPCT... 3-43
IBPPC ... 3-44
IBRD... 3-46
IBRDA ... 3-49
IBRDF... 3-52
IBRDI ... 3-55
IBRDIA...3-57
IBRPP ... 3-59
IBRSC... 3-62
IBRSP ... 3-63
IBRSV... 3-65
IBSAD ..3-66
IBSIC ..3-68
IBSRE... 3-69
IBSTOP...3-71
IBTMO ... 3-72

Contents

© National Instruments Corp. xi NKR BASIC

IBTRAP ..3-75
IBTRG ..3-77
IBWAIT..3-78
IBWRT ... 3-81
IBWRTA... 3-83
IBWRTF ... 3-86
IBWRTI ..3-88
IBWRTIA ..3-90
GPIB Programming Examples ..3-92

NKR BASIC Example Program – Device
Functions ... 3-94
NKR BASIC Example Program – Board
Functions ... 3-100

Appendix A
Multiline Interface Messages ... A-1

Appendix B
Applications Monitor... B-1

Installing the Applications Monitor ..B-2
IBTRAP ... B-2

Applications Monitor Options ..B-5
Main Commands... B-6
Session Summary Screen ... B-7
Configuring the Trap Mask ..B-7
Configuring the Monitor Mode ..B-7
Hiding and Showing the Applications MonitorB-8
Exiting Directly to DOS ... B-8

Appendix C
Customer Communication ..C-1

Contents

NKR BASIC xii © National Instruments Corp.

Figure

Figure B-1. Applications Monitor Pop-Up Screen B-1

Tables

Table 1-1. NKR BASIC NI-488.2 Routines 1-4
Table 1-2. NKR BASIC NI-488 Functions....................................... 1-6
Table 1-3. Functions That Alter Default Characteristics1-8

Table 3-1. Board Configuration Options... 3-11
Table 3-2. Device Configuration Options... 3-14
Table 3-3. Data Transfer Termination Method 3-22
Table 3-4. Parallel Poll Commands... 3-60
Table 3-5. Timeout Code Values ..3-72
Table 3-6. IBTRAP Mode... 3-75
Table 3-7. IBTRAP Errors .. 3-75
Table 3-8. Wait Mask Layout ... 3-78

© National Instruments Corp. 1-1 NKR BASIC

Chapter 1
General Information

This chapter lists the files relevant to programming in NKR BASIC,
contains programming preparations, discusses how to use the NI-488.2
routine and NI-488 function examples, and summarizes the calls that will be
explained at length in Chapter 2 and Chapter 3.

NKR BASIC Files

The NI-488.2 software distribution diskette contains five files relevant to
programming in NKR BASIC:

• DECL.B is a file containing declarations.

• NBIB.OBJ is the NKR BASIC language interface that gives your
application program access to the driver.

• DSAMP.B is a sample program using device calls.

• BSAMP.B is a sample program using board calls.

• BSAMP488.B is a sample program using NI-488.2 routines.

Copy the NKR BASIC distribution files to your work area and store the
originals in a safe place.

Programming Preparations

Place the following BASIC statement at the beginning of your application
program:

DECLARE integer ibsta, iberr, ibcnt

The following command can be entered from the command line to compile
your application program and link it with the language interface object
module.

b85 -o yourprogramname yourprogramname.b nbib.obj

General Information Chapter 1

NKR BASIC 1-2 © National Instruments Corp.

If your application program uses the conversion library, add the option
-lcvt to the previous command. The NKR BASIC sample programs
require this option.

The GPIB status, error, and count information are returned in the variables
ibsta , iberr , and ibcnt , respectively.

Testing the Status Word

Testing the value of the status word (ibsta) aids in error recovery and
diagnostic routines. Notice that the ERR bit is the highest order position of
the status word and is therefore the sign bit of the status word. To
determine if an error has occurred, test whether the value of ibsta is less
than zero with the following statement:

if (ibsta < 0) then call error

where error is a user-written error handling routine.

You can also test for particular bits in the status word. Move the value of
ibsta into a conversion variable denoted by _i . The conversion variable
is used in the b_AND conversion library function to test the desired bit.
The following is an example of testing for the CMPL bits (hex 100):

let ibsta_i = ibsta
if b_AND (ibsta_i, 256)<>0 then

call error
end if

Note: Explicit code that tests the status word is not necessary if you are
using the applications monitor. For information on the
applications monitor refer to Appendix B, Applications Monitor .

Count Variable – ibcnt

The count variables are updated after each read, write, or command function
with the number of bytes actually transferred by the operation. These
variables are also updated by many of the NI-488.2 routines. ibcnt is an
integer value (16 bits wide).

Chapter 1 General Information

© National Instruments Corp. 1-3 NKR BASIC

NKR BASIC NI-488 I/O Calls

The most commonly needed I/O calls are ibrd and ibwrt . In NKR
BASIC, these functions read and write from a character string that can be up
to 132 bytes long. The maximum string length can be changed to a value
less than 32767. Refer to the NKR BASIC User's Guide for methods to
increase the string length.

In addition, integer I/O calls (ibrdi and ibwrti) are provided for users
whose data strings are longer than 132 bytes, or who need to perform
arithmetic operations on the data and want to avoid the overhead of
converting the character bytes of ibrd and ibwrt into integer format and
back again.

ibrdi and ibwrti are passed data in the form of an integer array, instead
of a character string whose maximum length is limited to 132 bytes. Using
these functions, you can store more than 132 bytes in a single buffer
without having to convert each pair of data bytes to an integer before doing
arithmetic operations on the data. Internally, the ibwrti function sends
each integer to the GPIB in low-byte, high-byte order. The ibrdi function
reads a series of data bytes from the GPIB and stores them into the integer
array in low-byte, high-byte order.

In addition to ibrdi and ibwrti , the asynchronous functions ibrdia
and ibwrtia are provided to perform asynchronous integer reads and
writes.

Using the NI-488.2 Routine and NI-488 Function
Examples

Numerous examples are provided with the NI-488 function descriptions in
this manual. By including the declaration file, you can pattern your
program code after the examples provided.

The routines and functions are listed alphabetically by name in
Chapter 2, NI-488.2 Software Routine Descriptions and Chapter 3, NI-488
Function Descriptions. Tables 1-1 and 1-2 list the NI-488.2 routines and
NI-488 functions, respectively, along with a brief descriptions of each
routine and function.

General Information Chapter 1

NKR BASIC 1-4 © National Instruments Corp.

Table 1-1. NKR BASIC NI-488.2 Routines

Call Syntax Description
AllSpoll (board,addresslist(1),
 resultlist(1))

Serial poll all devices

DevClear (board,address) Clear a single device

DevClearList
(board,addresslist(1))

Clear multiple devices

EnableLocal
(board,addresslist(1))

Enable operations from the
front panel of a device

EnableRemote
(board,addresslist(1))

Enable remote GPIB
programming of devices

FindLstn (board,addresslist(1),
 resultlist(1),limit)

Find all Listeners

FindRQS (board,addresslist(1),
 result)

Determine which device is
requesting service

PassControl (board,address) Pass control to another device
with Controller capability

PPoll (board,result) Perform a parallel poll

PPollConfig (board,address,
 dataline,dataline,
 sense)

Configure a device for
parallel polls

PPollUnconfig (board,
 addresslist(1))

Unconfigure devices for
parallel polls

RcvRespMsg (board,data$,
 termination)

Read data bytes from already
addressed device

ReadStatusByte (board,address,
 result)

Serial poll a single device to
get its status byte

Receive (board,address,data$,
 termination)

Read data bytes from a GPIB
device

ReceiveSetup (board,address) Prepare a particular device to
send data bytes and prepare
the GPIB board to read them

ResetSys (board,addresslist(1)) Initialize a GPIB system on
three levels

Send
(board,address,data$,eotmode)

Send data bytes to a single
GPIB device

SendCmds (board,commands$) Send GPIB command bytes

(continues)

Chapter 1 General Information

© National Instruments Corp. 1-5 NKR BASIC

Table 1-1. NKR BASIC NI-488.2 Routines (continued)

Call Syntax Description
SendDataBytes
(board,data$,eotmode)

Send data bytes to already
addressed devices

SendIFC (board) Clear the GPIB interface
functions with IFC

SendList (board,addresslist(1),
 data$,eotmode)

Send data bytes to multiple
GPIB devices

SendLLO (board) Send the local lockout
message to all devices

SendSetUp (board,addresslist(1)) Prepare particular devices to
receive data bytes

SetRWLS (board,addresslist)(1) Place particular devices in the
Remote with Lockout state

TestSRQ (board,result) Determine the current state of
the SRQ line

TestSys (board,addresslist,(1)
 resultlist(1))

Cause devices to conduct
self-tests

Trigger (board,address) Trigger a single device

Triggerlist
(board,addresslist(1))

Trigger multiple devices

WaitSRQ (board,result) Wait until a device asserts
Service Request

In Table 1-2, the first argument of all function calls except ibfind and
ibdev is the integer variable ud , which serves as a unit descriptor. Refer
to the IBFIND and IBDEV function descriptions in Chapter 3, NI-488
Function Descriptions , to determine the type of unit descriptor to use.

Note: In function syntax descriptions in this manual, the ud argument
can also be represented by bd , brd , or dev .

General Information Chapter 1

NKR BASIC 1-6 © National Instruments Corp.

Table 1-2. NKR BASIC NI-488 Functions

Call Syntax Description
ibbna (ud,bname$) Change access board of device

ibcac (ud,v) Become Active Controller

ibclr (ud) Clear specified device

ibcmd (ud,cmd$) Send commands from string

ibcmda (ud,cmd$) Send commands asynchronously from
string

ibconfig(ud,option,value) Configure the handler

ibdev(bdindex,pad,sad,tmo,
 eot,eos,ud)

Open an unused device when device
name is unknown

ibdma (ud,v) Enable/disable DMA

ibeos (ud,v) Change/disable EOS mode (write)

ibeot (ud,v) Enable/disable END message

ibfind (udname$,ud) Open device and return unit descriptor

ibgts (ud,v) Go from Active Controller to Standby

ibist (ud,v) Set/clear individual status bit for
Parallel Polls

iblines (ud,clines) Get status of GPIB lines

ibln (ud,pad,sad,listen) Check for the presence of a device on
the bus

ibloc (ud) Go to Local

ibonl (ud,v) Place device online/offline

ibpad (ud,v) Change Primary Address

ibpct (ud) Pass Control

ibppc (ud,v) Parallel Poll Configure

ibrd (ud,rd$) Read data to string

(continues)

Chapter 1 General Information

© National Instruments Corp. 1-7 NKR BASIC

Table 1-2. NKR BASIC NI-488 Functions (continued)

Call Syntax Description
ibrda (ud,rd$) Read data asynchronously to string

ibrdf (ud,flname$) Read data to file

ibrdi (ud,iarr(1),cnt) Read data to integer array

ibrdia (ud,iarr(1),cnt) Read data asynch to integer array

ibrpp (ud,ppr) Conduct a Parallel Poll

ibrsc (ud,v) Request/release System Control

ibrsp (ud,spr) Return serial poll byte

ibrsv (ud,v) Request service, set/change serial poll
byte

ibsad (ud,v) Change Secondary Address

ibsic (ud) Send Interface Clear for 100 µsec

ibsre (ud,v) Set/clear Remote Enable line

ibstop (ud) Abort asynchronous operation

ibtmo (ud,v) Change/disable time limit

ibtrg (ud) Trigger selected device

ibtrap (mask,mode) Configure Applications Monitor

ibwait (ud,mask) Wait for selected event

ibwrt (ud,wrt$) Write data from string

ibwrta (ud,wrt$) Write data asynchronously from string

ibwrtf (ud,flname$) Write data from file

ibwrti (ud,iarr(1),cnt) Write data from integer array

ibwrtia(ud,iarr(1),cnt) Write data asynch from integer array

General Information Chapter 1

NKR BASIC 1-8 © National Instruments Corp.

Dynamic Reconfiguration of Board and Device
Characteristics

Some functions can be called during the execution of an application
program to dynamically change some of the configured values. These
functions are shown in Table 1-3.

Table 1-3. Functions That Alter Default Characteristics

Characteristic Dynamically Changed by

Primary GPIB address ibpad

Secondary GPIB address ibsad

End-of-string (EOS) byte ibeos

7- or 8-bit compare on EOS ibeos

Set EOI with EOS on Write ibeos

Terminate a Read on EOS ibeos

Set EOI w/last byte of Write ibeot

Change board assignment ibbna

Enable or disable DMA ibdma

Change or disable time limit ibtmo

Request/release system control ibrsc

Set/clear individual status bit ibist

Set/change serial poll status byte ibrsv

Set/clear Remote Enable line ibsre

© National Instruments Corp. 2-1 NKR BASIC

Chapter 2
NI-488.2 Routine Descriptions

This chapter contains a detailed description of each NI-488.2 routine with
example programs. The routines are listed alphabetically for easy reference.

NI-488.2 Software Routine Descriptions Chapter 2

NKR BASIC 2-2 © National Instruments Corp.

AllSpoll AllSpoll

Purpose: Serial Poll all devices.

Format: CALL AllSpoll (board,addresslist(1),
 resultlist(1))

board is a board number. The parameters addresslist and
resultlist are arrays for any size of address intergers, terminated by
the value NOADDR (-1) . The GPIB devices whose addresses are
contained in the addresslist array are serial polled, and the responses
are stored in the corresponding elements of the resultlist array.

If any of the specified devices times out instead of responding to the poll,
then the error code EABO is returned in iberr , and ibcnt contains the
index of the timed-out device.

Although the AllSpoll routine is general enough to serial poll any
number of GPIB devices, the ReadStatusByte routine should be used in
the case of polling exactly one GPIB device.

Example:

Serial poll two devices connected to board 0 whose GPIB addresses are
8 and 9.

DECLARE integer addresslist (3), resultlist (3)
DECLARE integer board, NOADDR
LET NOADDR = -1
LET board = 0
LET addresslist (1) = 8
LET addresslist (2) = 9
LET addresslist (3) = NOADDR
CALL AllSpoll (board, addresslist (1), resultlist(1))

Chapter 2 NI-488.2 Software Routine Descriptions

© National Instruments Corp. 2-3 NKR BASIC

DevClear DevClear

Purpose: Clear a single device.

Format: CALL DevClear (board,address)

board is a board number. The GPIB Selected Device Clear (SDC)
message is sent to the device at the given address. The parameter
address contains in its low byte the primary GPIB address of the device
to be cleared. The high byte should be 0 if the device has no secondary
address. Otherwise, it should contain the desired secondary address. If
address contains the constant value NOADDR (-1) , the universal Device
Clear message is sent to all devices on the GPIB.

The DevClear routine is used to clear either exactly one GPIB device, or
all GPIB devices. To send a single message that clears several particular
GPIB devices, use the DevClearList routine.

Example:

Clear a digital voltmeter connected to board 0 whose primary GPIB
address is 9 and whose secondary GPIB address is 97 .

DECLARE integer board, address
LET board = 0
LET address = 9 + 256*97
CALL DevClear (board, address)

NI-488.2 Software Routine Descriptions Chapter 2

NKR BASIC 2-4 © National Instruments Corp.

DevClearList DevClearList

Purpose: Clear multiple devices.

Format: CALL DevClearList (board,addresslist(1))

board is a board number. The GPIB devices whose addresses are
contained in the address array are cleared. The parameter addresslist
is an array for any size of address integers, terminated by the value
NOADDR (-1) .

Although the DevClearList routine is general enough to clear any
number of GPIB devices, the DevClear routine should be used in the
common case of clearing exactly one GPIB device.

If the array contains only the value NOADDR , the universal Device Clear
message is sent.

Example:

Clear two devices connected to board 0 whose GPIB addresses are 8
and 9.

DECLARE integer addresslist (3), board, NOADDR
LET NOADDR = -1
LET board = 0
LET addresslist (1) = 8
LET addresslist (2) = 9
LET addresslist (3) = NOADDR
CALL DevClearList (board, addresslist (1))

Chapter 2 NI-488.2 Software Routine Descriptions

© National Instruments Corp. 2-5 NKR BASIC

EnableLocal EnableLocal

Purpose: Enable operations from the front panel of a device.

Format: CALL EnableLocal (board,addresslist(1))

board is a board number. The GPIB devices whose addresses are
contained in the addresslist array are placed in local mode by
addressing the devices as Listeners and sending the GPIB Go To Local
command. The parameter addresslist is an array for any size of
address integers, terminated by the value NOADDR (-1) .

If the array contains only the value NOADDR , Remote Enable (REN)
becomes unasserted, immediately placing all GPIB devices in local mode.

Example:

Place the devices at GPIB addresses 8 and 9 in local mode.

DECLARE integer addresslist (3), board, NOADDR
LET NOADDR = -1
LET board = 0
LET addresslist (1) = 8
LET addresslist (2) = 9
LET addresslist (3) = NOADDR
CALL EnableLocal (board, addresslist (1))

NI-488.2 Software Routine Descriptions Chapter 2

NKR BASIC 2-6 © National Instruments Corp.

EnableRemote EnableRemote

Purpose: Enable remote GPIB programming of devices.

Format: CALL EnableRemote (board,addresslist(1))

board is a board number. The GPIB devices whose addresses are
contained in the addresslist array are placed in remote mode by
asserting Remote Enable (REN) and addressing the devices as Listeners.
The parameter addresslist is an array for any size of address integers,
terminated by the value NOADDR (-1).

If the array contains only the value NOADDR , no addressing is performed,
and Remote Enable (REN) becomes asserted.

Example:

Place the devices at GPIB addresses 8 and 9 in remote mode.

DECLARE integer addresslist (3), board, NOADDR
LET NOADDR = -1
LET board = 0
LET addresslist (1) = 8
LET addresslist (2) = 9
LET addresslist (3) = NOADDR
CALL EnableRemote (board, addresslist (1))

Chapter 2 NI-488.2 Software Routine Descriptions

© National Instruments Corp. 2-7 NKR BASIC

FindLstn FindLstn

Purpose: Find all Listeners.

Format: CALL FindLstn (board,addresslist (1),
 resultlist (1),limit)

board is a board number. addresslist contains a list of primary GPIB
addresses, terminated by the value NOADDR (-1). These addresses are
tested in turn for the presence of a listening device. If found, the addresses
are entered into the resultlist . If no listening device is detected at a
particular primary address, all the secondary addresses associated with that
primary address are tested, and detected Listeners are entered into
resultlist . The limit argument specifies how many entries should
be placed into the resultlist array. If more Listeners are present on the
bus, the list is truncated after limit entries have been detected, and the
error ETAB will be reported in iberr . The variable ibcnt will contain
the number of addresses placed into resultlist .

Because there can be multiple secondary addresses that respond as Listeners
for any given primary address, the resultlist array should, in general,
be larger than the addresslist array. In any event, the resultlist
array (with limit being the maximum possible results) must be large
enough to accommodate all expected listening devices because no check is
made for overflow of the array.

Because most GPIB devices have the ability to listen, this routine is
normally used to detect the presence of devices at particular addresses.
Once detected, they usually can be interrogated by identification messages
to determine what devices they are.

NI-488.2 Software Routine Descriptions Chapter 2

NKR BASIC 2-8 © National Instruments Corp.

FindLstn (continued) FindLstn

Example:

Determine which one of the devices at addresses 8 , 9, and 10 are
present on the GPIB.

DECLARE integer addresslist (4), resultlist (5), board
DECLARE integer limit, NOADDR
! Because there are three primary GPIB addresses,
! in the worst case 93 separate GPIB devices could
! be detected at all the secondary addresses. In
! this example, we are assuming that we know that
! there are at most 5 devices connected to the GPIB.
LET NOADDR = -1
LET board = 0
LET addresslist (1) = 8
LET addresslist (2) = 9
LET addresslist (3) = 10
LET addresslist (4) = NOADDR
LET limit = 5
CALL FindLstn (board, addresslist (1), resultlist (1),limit)

Following this call, the resultlist array might contain the
following values:

resultlist (1) 9
resultlist (2) 10 + 96*256
resultlist (3) 10 + 99*256

These results indicate that three GPIB devices were detected. One was
found at address 9 with no secondary address, no GPIB devices were
detected at primary address 8 , and, at address 10 , two devices with
secondary addresses were found. Because only primary GPIB
addresses 8, 9, and 10 were tested, it is possible that more GPIB
devices are connected at other addresses.

Chapter 2 NI-488.2 Software Routine Descriptions

© National Instruments Corp. 2-9 NKR BASIC

FindRQS FindRQS

Purpose: Determine which device is requesting service.

Format: CALL FindRQS (board,addresslist(1),result)

board is a board number. addresslist contains a list of primary GPIB
addresses, terminated by the value NOADDR . Starting from the beginning of
the addresslist , the indicated devices are serial polled until one is
found asserting SRQ. The status byte for this device is returned in the
variable result . In addition, the index of the device’s address in
addresslist is returned in the global variable ibcnt .

If none of the specified devices is requesting service, the error code ETAB
is returned in iberr , and ibcnt contains the index of the NOADDR entry
of the list.

If a device times out while responding to its serial poll, the error code
EABO is returned in iberr , and the index of the timed-out device will
appear in ibcnt .

Example:

Determine which one of the devices at addresses 8 , 9, and 10 are
requesting service.

DECLARE integer addresslist (4), board, result, NOADDR
LET NOADDR = -1
LET board = 0
LET addresslist (1) = 8
LET addresslist (2) = 9
LET addresslist (3) = 10
LET addresslist (4) = NOADDR
CALL FindRQS (board, addresslist (1), result)

Following this call, result might contain the value hex 40 (the serial
poll response), and ibcnt might contain the value 1, indicating that
the device at addresslist (2) was the first device in the list found
to be asserting SRQ.

NI-488.2 Software Routine Descriptions Chapter 2

NKR BASIC 2-10 © National Instruments Corp.

PassControl PassControl

Purpose: Pass control to another device with Controller capability.

Format: CALL PassControl (board,address)

board is a board number. The GPIB Device Take Control message is sent
to the device at the given address. The parameter address contains in its
low byte the primary GPIB address of the device to be passed control. The
high byte should be 0 if the device has no secondary address. Otherwise, it
should contain the desired secondary address.

Example:

Pass control to a Controller connected to board 0 whose primary GPIB
address is 9.

DECLARE integer board, address
LET board = 0
LET address = 9
CALL PassControl (board, address)

Chapter 2 NI-488.2 Software Routine Descriptions

© National Instruments Corp. 2-11 NKR BASIC

PPoll PPoll

Purpose: Perform a parallel poll.

Format: CALL PPoll (board,result)

board is a board number. A parallel poll is conducted, and the eight-bit
result is stored into result . Only the lower eight bits of result are
affected. The upper byte contains whatever value it did before the call was
made.

Each bit of the poll result returns one bit of status information from each
device that has been configured for parallel polls. The state of each bit
(0 or 1), and the interpretation of these states are based on the latest parallel
poll configuration sent to the devices and the individual status of the
devices.

Example:

Perform a parallel poll on board 0 .

DECLARE integer board, result
LET board = 0
CALL PPoll (board, result)

NI-488.2 Software Routine Descriptions Chapter 2

NKR BASIC 2-12 © National Instruments Corp.

PPollConfig PPollConfig

Purpose: Configure a device for parallel polls.

Format: CALL PPollConfig
(board,address,dataline,sense)

board is a board number. The GPIB device at address is configured for
parallel polls according to the dataline and sense parameters.
dataline is the data line (1 through 8) on which the device is to respond,
and sense indicates the condition under which the data line is to be
asserted or unasserted. The device is expected to compare this sense value
(0 or 1) to its individual status bit, and respond accordingly.

Devices have the option of configuring themselves for parallel polls, in
which case they are to ignore attempts by the Controller to configure them.
You should determine whether the device is locally or remotely
configurable before using PPollConfig or PPollUnconfig .

Example:

Configure a device connected to board 0 at address 8 so that it
responds to parallel polls on data line 5 with sense 0 (assert the line if
the individual status is 0, unassert the line if the individual status is 1).

DECLARE integer address, board, dataline, sense
LET address = 8
LET board = 0
LET dataline = 5
LET sense = 0
CALL PPollConfig (board, address, dataline, sense)

Chapter 2 NI-488.2 Software Routine Descriptions

© National Instruments Corp. 2-13 NKR BASIC

PPollUnconfig PPollUnconfig

Purpose: Unconfigure devices for parallel polls.

Format: CALL PPollUnconfig (board,addresslist(1))

board is a board number. The GPIB devices whose addresses are
contained in the address array are unconfigured for parallel polls; that is,
they no longer participate in polls. The parameter addresslist is an
array of address integers of any size, terminated by the value
NOADDR (-1) .

If the array contains only the value NOADDR , the GPIB Parallel Poll
Unconfigure (PPU) message is sent, unconfiguring all devices.

Example:

Unconfigure two devices connected to board 0 whose GPIB addresses
are 8 and 9.

DECLARE integer addresslist (3), board, NOADDR
LET NOADDR = -1
LET board = 0
LET addresslist (1) = 8
LET addresslist (2) = 9
LET addresslist (3) = NOADDR
CALL PPollUnconfig (board, addresslist (1))

NI-488.2 Software Routine Descriptions Chapter 2

NKR BASIC 2-14 © National Instruments Corp.

RcvRespMsg RcvRespMsg

Purpose: Read data bytes from already addressed device.

Format: CALL RcvRespMsg (board,data$,termination)

board is a board number. The data bytes are read from the GPIB and
placed into the pre-allocated string data . The amount of data is inferred
from the length of the string, which must be pre-allocated to a suitable
length. termination is a flag used to describe the method of signaling
the end of the data. If it is a value between 0 and hex 00FF, the ASCII
character with the corresponding hex value is considered the termination
character, and the read is stopped when the character is detected. If
termination is the constant STOPend (defined in the header file
DECL .B), the read is stopped when EOI is detected.

RcvRespMsg assumes that the GPIB Talker and Listeners have already
been addressed by a prior call to routines such as ReceiveSetup ,
Receive , or SendCmds . Thus, it is used specifically to skip the
addressing step of GPIB management. The Receive routine is normally
used to accomplish the entire sequence of addressing followed by the
reception of data bytes.

Example:

Receive 100 bytes from an already addressed Talker. The transmission
should be terminated when a linefeed character (hex 0A) is detected.

DECLARE integer board, termination
LET board = 0
LET data$ = REPEAT$(" ",100)
LET termination = 10
CALL RcvRespMsg (board, data$, termination)

Chapter 2 NI-488.2 Software Routine Descriptions

© National Instruments Corp. 2-15 NKR BASIC

ReadStatusByte ReadStatusByte

Purpose: Serial poll a single device to get its status byte.

Format: CALL ReadStatusByte (board,address,result)

board is a board number. The indicated device is serial polled, and its
status byte is placed into the variable result , with the status byte zero-
extended into the upper byte.

Example:

Serial poll the device at address 8 and return its status byte.

DECLARE integer board, address, result
LET board = 0
LET address = 8
CALL ReadStatusByte (board, address, result)

NI-488.2 Software Routine Descriptions Chapter 2

NKR BASIC 2-16 © National Instruments Corp.

Receive Receive

Purpose: Read data bytes from a GPIB device.

Format: CALL Receive (board,address,data$,termination)

board is a board number. The indicated GPIB device is addressed, and the
data bytes are read from that device and placed into the pre-allocated string
data . termination is a value used to describe the method of signaling
the end of the data. If it is a value between 0 and hex 00FF, the ASCII
character with the corresponding hex value is considered the termination
character, and the read is stopped when the character is detected. If
termination is the constant STOPend (hex 100), the read is stopped
when END is detected.

Example:

Receive 100 bytes from the device at address 8 . The transmission
should be terminated when END is detected.

DECLARE integer board, address, STOPend, termination
LET STOPend = 256
LET board = 0
LET address = 8
LET data$ = REPEAT$ (" ",100)
LET termination = STOPend
CALL Receive (board, address, data$, termination)

Chapter 2 NI-488.2 Software Routine Descriptions

© National Instruments Corp. 2-17 NKR BASIC

ReceiveSetup ReceiveSetup

Purpose: Prepare a particular device to send data bytes and prepare the
GPIB interface board to read them.

Format: CALL ReceiveSetup (board,address)

board is a board number. The indicated GPIB device is addressed as a
Talker, and the indicated board is addressed as a Listener. Following this
routine, it is common to call a routine such as RcvRespMsg to actually
transfer the data from the Talker.

This routine is useful to initially address devices in preparation for receiving
data, followed by multiple calls of RcvRespMsg to receive multiple blocks
of data, thus eliminating the need to re-address the devices between blocks.
Alternatively, the Receive routine could be used to send the first data
block, followed by RcvRespMsg for all the subsequent blocks.

Example:

Prepare a GPIB device at address 8 to send data bytes to board 0.
Then, receive messages of up to 100 bytes from the device, and store it
in a string. The message is to be terminated with END.

DECLARE integer board, address, STOPend
LET STOPend = 256
LET board = 0
LET address = 8
LET messages$ = REPEAT$(" ",100)
CALL ReceiveSetup (board, address)
LET termination = STOPend
CALL RcvRespMsg (board, messages$, termination)

NI-488.2 Software Routine Descriptions Chapter 2

NKR BASIC 2-18 © National Instruments Corp.

ResetSys ResetSys

Purpose: Initialize a GPIB system on three levels.

Format: CALL ResetSys (board,addresslist(1))

board is a board number. The GPIB system is initialized on the following
three levels:

• Bus initialization: Remote Enable (REN) is asserted, followed
by Interface Clear (IFC), causing all devices
to become unaddressed and the GPIB
interface board (the System Controller) to
become the Controller-in-Charge.

• Message exchange
initialization: The Device Clear (DCL) message is sent to

all connected devices. This ensures that all
488.2 compatible devices can receive the
Reset (RST) message that follows.

• Device initialization: *RST message is sent to all devices whose
addresses are contained in the
addresslist argument. This causes
device-specific functions within each device
to be initialized.

Example:

Completely reset a GPIB system containing devices at addresses 8, 9,
and 10 .

DECLARE integer addresslist (4), board, NOADDR
LET board = 0
LET NOADDR = -1
LET addresslist (1) = 8
LET addresslist (2) = 9
LET addresslist (3) = 10
LET addresslist (4) = NOADDR
CALL ResetSys (board, addresslist(1))

Chapter 2 NI-488.2 Software Routine Descriptions

© National Instruments Corp. 2-19 NKR BASIC

Send Send

Purpose: Send data bytes to a single GPIB device.

Format: CALL Send (board,address,data$,eotmode)

board is a board number. The indicated GPIB device is addressed as a
Listener, the indicated board is addressed as a Talker, and the data bytes
contained in data are sent. eotmode is a flag used to describe the
method of signaling the end of the data to the Listener. It should be set to
one of the following constants:

• NLend = 1 Send NL (linefeed) with EOI after the data bytes.

• DABend = 2 Send EOI with the last data byte in the string.

• NULLend = 0 Do nothing to mark the end of the transfer.

These constants are defined in the header file DECL.B.

Example:

Send an identification query to the GPIB device at address 8.
Terminate the transmission using a linefeed character with END.

DECLARE integer board, address, eotmode, NLend
LET NLend = 1
LET board = 0
LET address = 8
LET data$ = “*IDN?”
LET eotmode = NLend
CALL Send (board, address, data$, eotmode)

NI-488.2 Software Routine Descriptions Chapter 2

NKR BASIC 2-20 © National Instruments Corp.

SendCmds SendCmds

Purpose: Send GPIB command bytes.

Format: CALL SendCmds (board,commands$)

board is a board number. commands contains command bytes to be sent
onto the GPIB.

SendCmds is not normally required for GPIB operation. It is to be used
when specialized command sequences, which are not provided for in other
routines, must be sent onto the GPIB.

Example:

Controller, at address 0 , simultaneously triggers GPIB devices at
addresses 8 and 9, and immediately places them into local mode.

DECLARE integer board
LET board = 0
LET commands$ = chr$(63)&chr$(64)&chr$(40)&
 &chr$(41)&chr$(4)&chr$(1)
CALL SendCmds (board, commands$)

Chapter 2 NI-488.2 Software Routine Descriptions

© National Instruments Corp. 2-21 NKR BASIC

SendDataBytes SendDataBytes

Purpose: Send data bytes to already addressed devices.

Format: CALL SendDataBytes (board,data$,eotmode)

board is a board number. data contains data bytes to be sent on to the
GPIB. eotmode is a flag used to describe the method of signaling the end
of the data to the Listeners. It should be set to one of the following
constants:

• NLend = 1 Send NL (linefeed) with EOI after the data bytes.

• DABend = 2 Send EOI with the last data byte in the string.

• NULLend = 0 Do nothing to mark the end of the transfer.

These constants are defined in the header file DECL.B.

SendDataBytes assumes that all GPIB Listeners have already been
addressed by a prior call to functions such as SendSetup , Send , or
SendCmds . Thus, it is used specifically to skip the addressing step of
GPIB management . The Send routine is normally used to accomplish the
entire sequence of addressing followed by the transmission of data bytes.

Example:

Send an identification query to all addressed Listeners. The
transmission should be terminated with a linefeed character with END.

DECLARE integer board, NLend, eotmode
LET NLend = 1
LET board = 0
LET data$ = “*IDN?”
LET eotmode = NLend
CALL SendDataBytes (board, data$, eotmode)

NI-488.2 Software Routine Descriptions Chapter 2

NKR BASIC 2-22 © National Instruments Corp.

SendIFC SendIFC

Purpose: Clear the GPIB interface functions with IFC.

Format: CALL SendIFC (board)

board is a board number. The GPIB Device IFC message is issued,
resulting in the interface functions of all connected devices returning to
their cleared states.

This function is used as part of GPIB initialization. It forces the GPIB
interface board to be Controller of the GPIB, and ensures that the connected
devices are all unaddressed and that the interface functions of the devices
are in their idle states.

Example:

Clear the interface functions of the devices connected to board 0.

DECLARE integer board
LET board = 0
CALL SendIFC (board)

Chapter 2 NI-488.2 Software Routine Descriptions

© National Instruments Corp. 2-23 NKR BASIC

SendList SendList

Purpose: Send data bytes to multiple GPIB devices.

Format: CALL SendList (board,addresslist(1),data$,
 eotmode)

board is a board number. addresslist contains a list of primary GPIB
addresses, terminated by the value NOADDR (-1) . The GPIB devices
whose addresses are contained in the address array are addressed as
Listeners, the indicated board is addressed as a Talker, and the data bytes
contained in data are sent. eotmode is a flag used to describe the
method of signaling the end of the data to the Listener. It should be set to
one of the following constants:

• NLend = 1 Send NL (linefeed) with EOI after the data bytes.

• DABend = 2 Send EOI with the last data byte in the string.

• NULLend = 0 Do nothing to mark the end of the transfer.

These constants are defined in the header file DECL.B.

This routine is similar to Send , except that multiple Listeners are able to
receive the data with only one transmission.

NI-488.2 Software Routine Descriptions Chapter 2

NKR BASIC 2-24 © National Instruments Corp.

SendList (continued) SendList

Example:

Send an identification query to the GPIB devices at address 8 and 9.
The transmission should be terminated using a linefeed character with
EOI.

DECLARE integer addresslist (3), board, eotmode
DECLARE integer NOADDR, NLend
LET NLend = 1
LET NOADDR = -1
LET board = 0
LET addresslist (1) = 8
LET addresslist (2) = 9
LET addresslist (3) = NOADDR
LET data$ = "*IDN?"
LET eotmode = NLend
CALL SendList (board, addresslist(1), data$, eotmode)

Chapter 2 NI-488.2 Software Routine Descriptions

© National Instruments Corp. 2-25 NKR BASIC

SendLLO SendLLO

Purpose: Send the Local Lockout message to all devices.

Format: CALL SendLLO (board)

board is a board number. The GPIB Local Lockout message is sent to all
devices, so that the devices cannot independently choose the local or remote
states. While Local Lockout is in effect, only the Controller can alter the
local or remote state of the devices by sending appropriate GPIB messages.

SendLLO is reserved for use in unusual local/remote situations, particularly
those in which all devices are to be locked into local programming state. In
the typical case of placing devices in Remote Mode With Lockout state, the
SetRWLS routine should be used.

Example:

Send the Local Lockout message to all devices connected to board 0.

DECLARE integer board
LET board = 0
CALL SendLLO (board)

NI-488.2 Software Routine Descriptions Chapter 2

NKR BASIC 2-26 © National Instruments Corp.

SendSetup SendSetup

Purpose: Prepare particular devices to receive data bytes.

Format: CALL SendSetup (board,addresslist(1))

board is a board number. The GPIB devices whose addresses are
contained in the addresslist array are addressed as Listeners, and the
indicated board is addressed as a Talker. Following this call, it is common
to call a routine such as SendDataBytes to actually transfer the data to
the Listeners. The parameter addresslist is an array for any size of
address integers, terminated by the value NOADDR (-1) .

This command would be useful to initially address devices in preparation
for sending data, followed by multiple calls of SendDataBytes to send
multiple blocks of data, thus eliminating the need to re-address the devices
between blocks. Alternatively, the Send routine could be used to send the
first data block, followed by SendDataBytes for all the subsequent
blocks.

Example:

Prepare GPIB devices at addresses 8 and 9 to receive data bytes. Then,
send both devices the five messages stored in a string array. EOI is to
be sent along with the last byte of the last message.

DECLARE integer addresslist (3), board, i
DECLARE integer NULLend, NLend
DECLARE string*10 messages$(5)
LET board = 0
LET addresslist (1) = 8
LET addresslist (2) = 9
LET addresslist (3) = NOADDR
LET messages$(1) = "Message 0"
LET messages$(2) = "Message 1"
LET messages$(3) = "Message 2"
LET messages$(4) = "Message 3"
LET messages$(5) = "Message 4"
CALL SendSetup (board, addresslist (1))
FOR i = 1 to 4
 CALL SendDataBytes (board, messages$(i), NULLend)
NEXT i
CALL SendDataBytes (board, messages$(5), NLend)

Chapter 2 NI-488.2 Software Routine Descriptions

© National Instruments Corp. 2-27 NKR BASIC

SetRWLS SetRWLS

Purpose: Place particular devices in the Remote With Lockout State.

Format: CALL SetRWLS (board,addresslist(1))

board is a board number. The GPIB devices whose addresses are
contained in the addresslist array are placed in remote mode by
asserting Remote Enable (REN) and addressing the devices as Listeners. In
addition, all devices are placed in Lockout State, which prevents them from
independently returning to local programming mode without passing
through the Controller. The parameter addresslist is an array of any
size of address integers, terminated by the value NOADDR (-1) .

Example:

Place the devices at GPIB addresses 8 and 9 in Remote With Lockout
State.

DECLARE integer addresslist (3), board, NOADDR
LET NOADDR = -1
LET board = 0
LET addresslist (1) = 8
LET addresslist (2) = 9
LET addresslist (3) = NOADDR
CALL SetRWLS (board, addresslist (1))

NI-488.2 Software Routine Descriptions Chapter 2

NKR BASIC 2-28 © National Instruments Corp.

TestSRQ TestSRQ

Purpose: Determine the current state of the SRQ line.

Format: CALL TestSRQ (board,result)

board is a board number. This call places the value 1 in the variable
result if the GPIB SRQ line is asserted. Otherwise, it places the value of
0 into result .

This routine is similar in format to the WaitSRQ routine, except that
WaitSRQ suspends itself waiting for an occurrence of SRQ, whereas
TestSRQ returns immediately with the current SRQ state.

Example:

Determine the current state of SRQ.

DECLARE integer board, result
LET board = 0
CALL TestSRQ (board, result)
IF result = 1 then
 ! SRQ is asserted
ELSE
 ! No SRQ at this time
END IF

Chapter 2 NI-488.2 Software Routine Descriptions

© National Instruments Corp. 2-29 NKR BASIC

TestSys TestSys

Purpose: Cause devices to conduct self-tests.

Format: CALL TestSys (board,addresslist(1),
resultlist(1))

board is a board number. The GPIB devices whose addresses are
contained in the address array are simultaneously sent a message that
instructs them to conduct their self-test procedures. Each device returns an
integer code signifying the results of its tests, and these codes are placed
into the corresponding elements of the resultlist array. The
IEEE 488.2 standard specifies that a result code of 0 indicates that the
device passed its tests, and any other value indicates that the tests resulted in
an error. The variable ibcnt contains the number of devices that failed
their tests. The parameter addresslist is an array of address integers of
any size, terminated by the value NOADDR (-1) .

Example:

Instruct two devices connected to board 0 whose GPIB addresses are 8
and 9 to perform their self-tests.

DECLARE integer addresslist (3), resultlist (2), NOADDR
LET NOADDR = -1
LET board = 0
LET addresslist (1) = 8
LET addresslist (2) = 9
LET addresslist (3) = NOADDR
CALL TestSys (board, addresslist (1), resultlist(1))
! If any of the results are non-zero, the
! corresponding device has failed the test.

NI-488.2 Software Routine Descriptions Chapter 2

NKR BASIC 2-30 © National Instruments Corp.

Trigger Trigger

Purpose: Trigger a single device.

Format: CALL Trigger (board,address)

board is a board number. The GPIB Group Execute Trigger message is
sent to the device at the given address. The parameter address contains
in its low byte the primary GPIB address of the device to be cleared. The
high byte should be 0 if the device has no secondary address. Otherwise, it
should contain the desired secondary address. If the address is NOADDR
(-1), the Group Execute Trigger message is sent with no addressing, thereby
triggering all previously addressed Listeners.

The Trigger routine is used to trigger exactly one GPIB device. To send
a single message that triggers several particular GPIB devices, use the
TriggerList function.

Example:

Trigger a digital voltmeter connected to board 0 whose primary GPIB
address is 9 and whose secondary GPIB address is 97 .

DECLARE integer board, address
LET board = 0
LET address = 9 + 256*97
CALL Trigger (board, address)

Chapter 2 NI-488.2 Software Routine Descriptions

© National Instruments Corp. 2-31 NKR BASIC

TriggerList TriggerList

Purpose: Trigger multiple devices.

Format: CALL TriggerList (board,addresslist(1))

board is a board number. The GPIB devices whose addresses are
contained in the address array are triggered simultaneously. The parameter
addresslist is an array of address integers of any size, terminated by
the value NOADDR (-1) . If the array contains only the value
NOADDR (-1) , the Group Execute Trigger message is sent without
addressing, thereby triggering all previously addressed Listeners.

Although the TriggerList routine is general enough to trigger any
number of GPIB devices, the Trigger function should be used in the
common case of triggering exactly one GPIB device.

Example:

Trigger simultaneously two devices connected to board 0 whose GPIB
addresses are 8 and 9.

DECLARE integer addresslist (3), board, NOADDR
LET NOADDR = -1
LET board = 0
LET addresslist (1) = 8
LET addresslist (2) = 9
LET addresslist (3) = NOADDR
CALL TriggerList (board, addresslist (1))

NI-488.2 Software Routine Descriptions Chapter 2

NKR BASIC 2-32 © National Instruments Corp.

WaitSRQ WaitSRQ

Purpose: Wait until a device asserts Service Request.

Format: CALL WaitSRQ (board,result)

board is a board number. This routine is used to suspend execution of the
program until a GPIB device connected to the indicated board asserts the
Service Request (SRQ) line. If the SRQ occurs within the timeout period,
the variable result will be set to the value 1. If no SRQ is detected
before the timeout period expires, result will be set to 0.

Notice that this call is similar in format to the TestSRQ routine, except that
TestSRQ returns immediately with SRQ status, whereas WaitSRQ
suspends the program for, at most, the duration of the timeout period
waiting for an SRQ to occur.

Example:

Wait for a GPIB device to request service, and then determine which of
three devices at addresses 8 , 9, and 10 requested the service.

DECLARE integer addresslist (4), resultlist (3)
DECLARE integer board, result, NOADDR
LET NOADDR = -1
LET board = 0
LET addresslist (1) = 8
LET addresslist (2) = 9
LET addresslist (3) = 10
LET addresslist (4) = NOADDR
CALL WaitSRQ (board, result)
IF result = 1 THEN
 CALL AllSpoll (board, addresslist (1),

resultlist(1))
END IF
! resultlist() now contains the serial poll
responses
! for the three devices.

Chapter 2 NI-488.2 Software Routine Descriptions

© National Instruments Corp. 2-33 NKR BASIC

NI–488.2 Programming Example

You can take full advantage of the IEEE 488.2-1987 standard by using the
NI-488.2 routines. These routines are completely compatible with the
controller commands and protocols defined in IEEE 488.2.

The NI-488.2 routines are easy to learn and use. Only a few routines are
needed for most application programs.

This example illustrates the programming steps that could be used to
program a representative IEEE 488.2 instrument from your personal
computer using the NI-488.2 routines. The application is written in NKR
BASIC. The target instrument is a digital voltmeter (DVM). This
instrument is otherwise unspecified (that is, it is not a DVM manufactured
by any particular manufacturer). The purpose here is to explain how to use
the driver to execute NI-488.2 programming and control sequences and not
how to determine those sequences.

Note: For a more detailed description of each step, refer to Chapter 3,
Writing an Advanced Program Using NI-488.2 Routines , in the
getting started manual that you received with your interface board.

1. Load in the definitions of the NI-488.2 routines from a file that is on
your distribution diskette.

2. Initialize the IEEE 488 bus and the interface board Controller circuitry
so that the IEEE 488 interface for each device is quiescent, and so that
the interface board is Controller-In-Charge and is in the Active
Controller State (CACS).

3. Find all of the Listeners:

a. Find all of the instruments attached to the IEEE 488 bus.

b. Create an array that contains all of the IEEE 488 primary addresses
that could possibly be connected to the IEEE 488 bus.

c. Find out which, if any, device or devices are connected.

4. Send an identification query to each device for identification.

NI-488.2 Software Routine Descriptions Chapter 2

NKR BASIC 2-34 © National Instruments Corp.

5. Initialize the instrument as follows:

a. Clear the multimeter.

b. Send the IEEE 488.2 Reset command to the meter.

6. Instruct the meter to measure volts alternating current (VAC) using
auto-ranging (AUTO), to wait for a trigger from the Controller before
starting a measurement (TRIGGER 2), and to assert the IEEE 488
Service Request signal line, SRQ, when the measurement has been
completed and the meter is ready to send the result (*SRE 16).

7. For each measurement:

a. Send the TRIGGER command to the multimeter. The command
"VAL1?" instructs the meter to send the next triggered reading to
its IEEE 488.2 output buffer.

b. Wait until the DVM asserts Service Request (SRQ) to indicate that
the measurement is ready to be read.

c. Read the status byte to determine if the measured data is valid or if
a fault condition exists. You can find out by checking the message
available (MAV) bit, bit 4 in the status byte.

d. If the data is valid, read 10 bytes from the DVM.

8. End the session.

The NI-488.2 driver supports two interface boards. These boards are
referenced by number from your application program. The reference
number is zero (0) for the first board and one (1) for the second board. If
you installed two boards in your computer, and you do not know which
board is 0 and which board is 1, run the configuration utility, ibconf .
ibconf will show you the relationship between the board number and the
base address of the board; thereby identifying the board by its base address.
Refer to Chapter 2, Installation and Configuration of NI-488.2 Software in
the Software Reference Manual for additional information about running
and using ibconf .

Chapter 2 NI-488.2 Software Routine Descriptions

© National Instruments Corp. 2-35 NKR BASIC

NKR BASIC Example Program – NI-488.2 Routines

! NKR BASIC Example Program - NI-488.2 Routines

OPTION BASE 0

 DECLARE integer ibsta, iberr, ibcnt ! GPIB status
! variables.

 DECLARE integer instruments(32) ! Array of primary
! addresses.

 DECLARE integer boardindex ! Board index.
 DECLARE integer result(32) ! Array of listen

! addresses.
 DECLARE integer num_listeners ! Number of

! Listeners on GPIB.
 DECLARE integer limit ! Maximum number of

! Listeners on GPIB.
 DECLARE integer mask ! Wait mask.
 DECLARE integer k ! FOR loop index.
 DECLARE integer v ! GPIB function

! parameter.
 DECLARE integer SRQasserted ! Set to indicate if

! SRQ asserted.
 DECLARE integer fluke ! Primary address of

! Fluke 45.
 DECLARE integer statusByte ! Serial poll

! response byte.
 DECLARE integer NOADDR ! Terminate address

! list.
 DECLARE integer NLend ! Send NL with EOI

! after transfer.
 DECLARE integer STOPend ! Stop the read on

! EOI.

! Constants used in this application program.

 LET NOADDR = -1
 LET NLend = 1
 LET STOPend = 256
 LET boardindex = 0

 CALL cls_1

! Your interface board must be the Controller-In-Charge to
find
! all Listeners on the GPIB. To accomplish this, the function
! SendIFC is called. If the error bit (ERR) is set in ibsta,
! call gpiberr with an error message.

NI-488.2 Software Routine Descriptions Chapter 2

NKR BASIC 2-36 © National Instruments Corp.

 CALL SendIFC(boardindex)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "SendIFC Error"
 CALL gpiberr
 STOP
 END IF

! Create an array containing all valid GPIB primary
! addresses. This array (instruments) will be given to
! the function FindLstn to find all Listeners. The
! constant NOADDR, defined in DECL.B, signifies the
! end of the array.

 FOR k = 0 to 30
 LET instruments(k) = k
 NEXT k

 LET instruments(31) = NOADDR

! Print a message to inform the user that the program is
! searching for all active Listeners. Find all of the
! Listeners on the bus. Store the listen addresses in the
! array result. If the error bit (ERR) is set in ibsta,
! call gpiberr with an error message.

 PRINT "Finding all Listeners on the bus..."
 LET limit = 31

 CALL FindLstn (boardindex, instruments(0), &
 & result(0), limit)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "FindLstn Error"
 CALL gpiberr
 STOP
 END IF

! Assign the value of ibcnt to the variable num_listeners.
The
! GPIB interface board is detected as a Listener on the bus;
! however, it is not included in the final count of the number
! of Listeners. Print the number of Listeners found.

 LET num_listeners = ibcnt - 1
 PRINT "No. of instruments found = ", num_listeners

! Send the *IDN? command to each device that was found.
! Your GPIB interface board is at address 0 by default.
! The board does not respond to *IDN?, so skip it.
!
! Establish a FOR loop to determine if the Fluke 45 is a
! Listener on the GPIB. The variable k serves as a counter
! for the FOR loop and as the index to the array result.

Chapter 2 NI-488.2 Software Routine Descriptions

© National Instruments Corp. 2-37 NKR BASIC

 FOR k = 1 to num_listeners

 ! Send the identification query to each listen address
 ! in the array result. The constant NLend, defined in
 ! DECL.B, instructs the function Send to append a
 ! linefeed character with EOI asserted to the end of
 ! the message. If the error bit (ERR) is set in
 ! ibsta, call gpiberr with an error message.

 LET cmd$ = "*IDN?"
 CALL Send(boardindex, result(k), cmd$, NLend)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Send Error"
 CALL gpiberr
 STOP
 END IF

 ! Read the name identification response returned
 ! from each device. Store the response in the array
 ! buffer. The constant STOPend, defined in DECL.B,
 ! instructs the function Receive to terminate the read
 ! when END is detected. If the error bit (ERR) is set
 ! in ibsta, call gpiberr with an error message.

 LET Reading$ = Repeat$(" ",10)
 CALL Receive(boardindex,result(k),Reading$, &
 & STOPend)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Receive Error"
 CALL gpiberr
 STOP
 END IF

 ! The low byte of the listen address is the primary
 ! address. Assign the variable pad the primary
 ! address of the device.

 LET num_i = result(k)
 LET pad_i = b_AND(num_i,255)

 ! Print the measurement received from the Fluke 45.

 LET rd$ = Reading$(1:ibcnt-1)
 PRINT "The instrument at address ";pad_i; " &
 & is: ";rd$

 ! Determine if the name identification is the Fluke
45.
 ! If it is the Fluke 45, assign pad to fluke, print
 ! message that the Fluke 5 has been found, call the
 ! function Found, and terminate the FOR loop.

 IF left$(Reading$, 9)="FLUKE, 45" & then GOSUB 2000
 NEXT k

NI-488.2 Software Routine Descriptions Chapter 2

NKR BASIC 2-38 © National Instruments Corp.

 PRINT "Did not find the Fluke!"
 GOSUB 4000

! Device found.

2000
 PRINT "**** We found the Fluke 45 ****"
 LET fluke = result(k)

! Reset the Fluke 45 using the functions DevClear and
! Send.
!
! DevClear will send the GPIB Selected Device Clear (SDC)
! command message to the Fluke 45. If the error bit (ERR)
! is set in ibsta, call gpiberr with an error message.

 CALL DevClear (boardindex, fluke)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "DevClear Error"
 CALL gpiberr
 STOP
 END IF

! Use the function Send to send the IEEE 488.2 reset command
! (*RST) to the Fluke 45. The constant NLend, defined
! in DECL.B, instructs the function Send to append a linefeed
! character with EOI asserted to the end of the message.
! If the error bit (ERR) is set in ibsta, call gpiberr
! with an error message.

 LET cmd$ = "*RST"
 CALL Send(boardindex, fluke, cmd$, NLend)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Send *RST Error"
 CALL gpiberr
 STOP
 END IF

! Use the function Send to send device configuration commands
! to the Fluke 45. Instruct the Fluke 45 to measure volts
! alternating current (VAC) using auto-ranging (AUTO),
! to wait for a trigger from the GPIB interface board
! (TRIGGER 2), and to assert the IEEE 488 Service Request
! line, SRQ, when the measurement has been completed and
! the Fluke 45 is ready to send the result (*SRE 16). If
! the error bit (ERR) is set in ibsta, call gpiberr with an
! error message.

Chapter 2 NI-488.2 Software Routine Descriptions

© National Instruments Corp. 2-39 NKR BASIC

 LET cmd$ = "VAC; AUTO; TRIGGER 2; *SRE 16"
 CALL Send(boardindex, fluke, cmd$, NLend)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Send setup Error"
 CALL gpiberr
 STOP
 END IF

! Initialize the accumulator of the ten measurements to zero.

 LET sum = 0

! Establish a FOR loop to read the ten measurements. The
! variable m serves as the counter of the FOR Loop.

 FOR m = 1 to 10

 ! Trigger the Fluke 45 by sending the trigger command
 ! (*TRG) and request a measurement by sending the
 ! command "VAL1?". If the error bit (ERR) is set in
 ! ibsta, call gpiberr with an error message.

 LET cmd$ = "*TRG; VAL1?"
 CALL Send(boardindex, fluke, cmd$, NLend)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Send trigger Error"
 CALL gpiberr
 STOP
 END IF

 ! Wait for the Fluke 45 to assert SRQ, meaning it is
 ! ready to send a measurement. If SRQ is not
 ! asserted within the timeout period, call gpiberr
 ! with an error message. The timeout period by
 ! default is 10 seconds.

 CALL WaitSRQ(boardindex, SRQasserted)
 IF SRQasserted = 0 then
 LET msg$ = "SRQ is not asserted. The Fluke is &
 & not ready."
 CALL gpiberr
 STOP
 END IF

NI-488.2 Software Routine Descriptions Chapter 2

NKR BASIC 2-40 © National Instruments Corp.

 ! Read the serial poll status byte of the Fluke 45.
 ! If the error bit (ERR) is set in ibsta, call gpiberr
 ! with an error message.

 CALL ReadStatusByte(boardindex, fluke, &
 & statusByte)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "ReadStatusByte Error"
 CALL gpiberr
 STOP
 END IF

 ! Check if the Message Available Bit (bit 4) of the
 ! return status byte is set. If this bit is not set,
 ! print the status byte and call gpiberr with an
 ! error message.

 LET mask = 16
 LET status_i = statusByte
 IF b_AND(status_i,mask) <> 16 then
 LET msg$ = "Improper Status Byte"
 CALL gpiberr
 PRINT "Status Byte = "; statusByte
 STOP
 END IF

 ! Read the Fluke 45 measurement. Store the
 ! measurement in the array Reading. The constant
 ! STOPend, defined in DECL.B, instructs the function
 ! Receive to terminate the read when END is detected.
 ! If the error bit (ERR) is set in ibsta, call gpiberr
 ! with an error message.

 CALL Receive (boardindex, fluke, Reading$, & STOPend
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Receive Error"
 CALL gpiberr
 STOP
 END IF

 ! Print the measurement received from the Fluke 45.

 LET rd$ = Reading$(1:ibcnt-1)
 PRINT "Reading : ";rd$
 PRINT

Chapter 2 NI-488.2 Software Routine Descriptions

© National Instruments Corp. 2-41 NKR BASIC

 ! Convert the measurement to its numeric value.
 ! If there is an error during the conversion,
terminate
 ! this program. If an error does not occur during
this
 ! conversion, add the value to the accumulator.

 LET sum = sum + val(Rd$)
 NEXT m

 PRINT "The average of the 10 readings is ", sum/10

! Call the ibonl function to disable the hardware and
! software.

4000

 LET v = 0
 CALL ibonl (boardindex,v)

! ===
! Procedure gpiberr
! The gpiberr procedure notifies you that an NI-488.2 routine
! failed by printing an error message. The status variable
! ibsta prints in hexadecimal along with the mnemonic
! meaning of the bit position. The status variable iberr
! prints in decimal along with the mnemonic meaning of the
! decimal value. The status variable ibcnt prints in decimal.
!
! The NI-488 function ibonl disables the hardware and
! software.
! ===
SUB gpiberr
 PRINT msg$

 PRINT "ibsta = &H"; hex$(ibsta_i)

 IF b_AND(ibsta_i, -32768) <> 0 then PRINT " ERR"
 IF b_AND(ibsta_i, 16384) <> 0 then PRINT " TIMO"
 IF b_AND(ibsta_i, 8192) <> 0 then PRINT " END"
 IF b_AND(ibsta_i, 4096) <> 0 then PRINT " SRQI"
 IF b_AND(ibsta_i, 2048) <> 0 then PRINT " RQS"
 IF b_AND(ibsta_i, 256) <> 0 then PRINT " CMPL"
 IF b_AND(ibsta_i, 128) <> 0 then PRINT " LOK"
 IF b_AND(ibsta_i, 64) <> 0 then PRINT " REM"
 IF b_AND(ibsta_i, 32) <> 0 then PRINT " CIC"
 IF b_AND(ibsta_i, 16) <> 0 then PRINT " ATN"
 IF b_AND(ibsta_i, 8) <> 0 then PRINT " TACS"
 IF b_AND(ibsta_i, 4) <> 0 then PRINT " LACS"
 IF b_AND(ibsta_i, 2) <> 0 then PRINT " DTAS"
 IF b_AND(ibsta_i, 1) <> 0 then PRINT " DCAS"
 PRINT

NI-488.2 Software Routine Descriptions Chapter 2

NKR BASIC 2-42 © National Instruments Corp.

 PRINT "iberr = ", iberr
 IF iberr = 0 then PRINT " EDVR <DOS Error>"
 IF iberr = 1 then PRINT " ECIC <Not CIC>"
 IF iberr = 2 then PRINT " ENOL <No Listener>"
 IF iberr = 3 then PRINT " EADR <Address error>"
 IF iberr = 4 then PRINT " EARG <Invalid argument>"
 IF iberr = 5 then PRINT " ESAC <Not Sys Ctrlr>"
 IF iberr = 6 then PRINT " EABO <Op. aborted>"
 IF iberr = 7 then PRINT " ENEB <No GPIB board>"
 IF iberr = 10 then PRINT " EOIP <Async I/O in prg>"
 IF iberr = 11 then PRINT " ECAP <No capability>"
 IF iberr = 12 then PRINT " EFSO <File sys. error>"
 IF iberr = 14 then PRINT " EBUS <Command error>"
 IF iberr = 15 then PRINT " ESTB <Status byte lost>"
 IF iberr = 16 then PRINT " ESRQ <SRQ stuck on>"
 IF iberr = 20 then PRINT " ETAB <Table Overflow>"
 PRINT

 PRINT "ibcnt = ", ibcnt

! Call the ibonl function to disable the hardware
! and software.

 LET v = 0
 CALL ibonl (boardindex,v)

END SUB

END

© National Instruments Corp. 3-1 NKR BASIC

Chapter 3
NI-488 Function Descriptions

This chapter contains a detailed description of each NI-488 function with
example programs. The descriptions are listed alphabetically for easy
reference.

In the following function syntax descriptions, the ud argument can also be
represented by bd , brd , or dev .

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-2 © National Instruments Corp.

IBBNA IBBNA

Purpose: Change access board of device.

Format: CALL ibbna (ud,bname$)

ud is a device. bname is the new access board to be used in all device calls
to that device. ibbna is needed only to alter the board assignment from its
configuration setting.

The assigned board is used in all subsequent device functions used with that
device until ibbna is called again, ibonl or ibfind is called, or the
system is restarted.

Refer also to Table 1-2.

Device Function Example:

Associate the device DVM with the interface board "GPIB0" .

DECLARE integer dvm
LET udname$ = "DVM"
CALL ibfind (udname$,dvm)
LET bname$ = "GPIB0"
CALL ibbna (dvm, bname$)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-3 NKR BASIC

IBCAC IBCAC

Purpose: Become Active Controller.

Format: CALL ibcac (ud,v)

ud is an interface board. If v is non-zero, the GPIB board takes control
synchronously with respect to data transfer operations; otherwise, the GPIB
board takes control immediately (asynchronously).

To take control synchronously, the GPIB board asserts the ATN signal
without corrupting data being transferred. If a data handshake is in
progress, the take control action is postponed until the handshake is
complete; if a handshake is not in progress, the take control action is done
immediately. Synchronous take control is not guaranteed if an ibrd or
ibwrt operation completed with a timeout error.

Asynchronous take control should be used in situations where it appears to
be impossible to gain control synchronously (for example, after a timeout
error).

It is generally not necessary to use the ibcac function in most
applications. Functions such as ibcmd and ibrpp , which require that the
GPIB board take control, do so automatically.

The ECIC error results if the GPIB board is not Controller-In-Charge (CIC).

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-4 © National Instruments Corp.

IBCAC (continued) IBCAC

Board Function Examples:

1. Take control immediately without regard to any data handshake in
progress.

DECLARE integer v, brd0
LET v = 0
CALL ibcac (brd0,v)
! ibsta should show that the interface board is now
! CAC, that is, CIC with ATN asserted.

2. Take control synchronously and assert ATN following a read operation.

DECLARE integer brd0
LET board$ = "GPIB0"
CALL ibfind (brd0, board$)
CALL ibrd (brd0, rd$)
LET v = 1
CALL ibcac (brd0, v)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-5 NKR BASIC

IBCLR IBCLR

Purpose: Clear specified device.

Format: CALL ibclr (ud)

ud is a device.

The ibclr function clears the internal or device functions of a specified
device.

ibclr calls the board function ibcmd to send the following commands
using the designated access board:

• Talk address of access board

• Unlisten (UNL)

• Listen address of the device

• Secondary address of the device, if applicable

• Selected Device Clear (SDC)

Other command bytes may be sent as necessary.

Refer to IBCMD for additional information.

Device Function Example:

Clear the device vmtr .

DECLARE integer vmtr
LET dev$ = "DEV3" ! open the voltmeter
CALL ibfind (dev$, vmtr)
! Clear the voltmeter
CALL ibclr (vmtr)

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-6 © National Instruments Corp.

IBCMD IBCMD

Purpose: Send commands from string.

Format: CALL ibcmd (ud,cmd$)

ud is an interface board. cmd contains the commands to be sent over the
GPIB.

The ibcmd function is used to transmit interface messages (commands)
over the GPIB. These commands are listed in Appendix A, Multiline
Interface Messages . The ibcmd function is also used to pass GPIB control
to another device. This function is not used to transmit programming
instructions to devices. These instructions are transmitted with the ibrd
and ibwrt functions.

The ibcmd operation terminates on any of the following events:

• All commands are successfully transferred.

• An error is detected.

• The time limit is exceeded.

• A Take Control (TCT) command is sent.

• An Interface Clear (IFC) message is received from the System
Controller.

The transfer count may be less than the requested count on any of the
previous terminating events but the first.

An ECIC error results if the GPIB board is not CIC. If it is not Active
Controller, the GPIB board takes control and asserts ATN prior to sending
the command bytes. The GPIB board remains Active Controller afterward.

In the examples that follow, GPIB commands and addresses are coded as
printable ASCII characters. If values correspond to printable ASCII
characters, it is simplest to use the ASCII characters to specify the values.
Refer to Appendix A, Multiline Interface Messages for the ASCII
characters corresponding to a numeric value.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-7 NKR BASIC

IBCMD (continued) IBCMD

Board Function Examples:

1. Unaddress all Listeners with the Unlisten (UNL or ASCII ?) command
and address a Talker at hex 46 (ASCII F) and a Listener at hex 31
(ASCII 1).

DECLARE integer brd0
LET cmd$ = "?F1" ! UNL TAD1 LAD2
CALL ibcmd (brd0, cmd$)

2. Same as Example 1, except the Listener has a secondary address of hex
6E (ASCII n).

DECLARE integer brd0
LET cmd$ = "?F1n" ! UNL TAD1 LAD2 SAD2
CALL ibcmd (brd0, cmd$)

3. Clear all GPIB devices (that is, reset internal functions) with the Device
Clear (DCL or hex 14) command.

DECLARE integer brd0
LET cmd$ = chr$ (20) ! DCL
CALL ibcmd (brd0, cmd$)

4. Clear two devices with listen addresses of hex 21 (ASCII !) and hex 28
(ASCII ([left parenthesis]) with the Selected Device Clear (SDC or
hex 04) command.

LET cmd$ = "!(" & chr$(04) ! LAD1 LAD2
CALL ibcmd (brd0, cmd$) ! SDC

5. Trigger any devices previously addressed to listen with the Group
Execute Trigger (GET or hex 08) command.

DECLARE integer brd0
LET cmd$ = chr$(08) ! GET
CALL ibcmd (brd0, cmd$)

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-8 © National Instruments Corp.

IBCMD (continued) IBCMD

6. Serial poll a device at talk address hex 52 (ASCII R) using the Serial
Poll Enable (SPE or hex 18) and Serial Poll Disable (SPD or hex 19)
commands (the GPIB board listen address is hex 20 or ASCII
<space>).

DECLARE integer brd0
LET cmd$ = "R " + chr$(24) ! UNL TAD MLA SPE
CALL ibcmd (brd0, cmd$)
LET rd$ = repeat$(" ",1)
CALL ibcmd (brd0, rd$)
! After checking the status byte in rd$, disable
! this device and unaddress it with the Untalk
! (UNT or ASCII _) command before polling the next
one.
LET cmd$ = chr$(25) & "_" ! SPD UNT
CALL ibcmd (brd0, cmd$)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-9 NKR BASIC

IBCMDA IBCMDA

Purpose: Send commands asynchronously from string.

Format: CALL ibcmda (ud,cmd$)

ud is an interface board. cmd contains the commands to be sent over the
GPIB.

The ibcmda function is used to transmit interface messages (commands)
over the GPIB. These commands are listed in Appendix A, Multiline
Interface Messages . The ibcmda function can also be used to pass GPIB
control to another device. This function is not used to transmit
programming instructions to devices. These instructions and other device-
dependent information are transmitted with the ibrd and ibwrt
functions.

ibcmda is used in place of ibcmd if the application program must
perform other functions while processing the GPIB command. ibcmda
returns immediately after starting the I/O operation.

The three asynchronous I/O calls (ibcmda , ibrda , and ibwrta) are
designed to allow an application to perform other functions (non-GPIB
functions) while processing the I/O. Once the asynchronous I/O call has
been initiated, further GPIB calls involving the device or access board are
not allowed until the I/O has completed and the GPIB driver and the
application have been resynchronized.

Resynchronization can be accomplished by using one of the following three
functions:

Note: Resynchronization is only successful if the ibsta returned
contains CMPL.

• ibwait (mask
contains CMPL) - The driver and application are synchronized.

• ibstop - The asynchronous I/O is canceled, and the driver
and application are synchronized.

• ibonl - The asynchronous I/O is canceled, the interface
has been reset, and the driver and application are
synchronized.

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-10 © National Instruments Corp.

IBCMDA (continued) IBCMDA

The only other GPIB call that is allowed during asynchronous I/O is the
ibwait function (mask is arbitrary). Any other GPIB call involving the
device or access board returns the EOIP error.

An ECIC error results if the GPIB board is not CIC. If it is not Active
Controller, the GPIB board takes control and asserts ATN prior to sending
the command bytes. It remains Active Controller afterward. The ENOL
error will be returned if there are no other devices on the IEEE 488 bus.

Board Function Example:

Address several devices for a broadcast message to follow while testing
for a high priority event to occur.

DECLARE integer brd0, mask
! The interface board BRD0 at talk address hex 40
! (ASCII @), addresses nine Listeners at addresses
! hex 31-hex 39 (ASCII 1-9) to receive the
! broadcast message.
LET board$ = "GPIB0"
CALL ibfind (board$, brd0)
LET cmd$ = "?@1234567789" ! UNL MTA

! LAD1...LAD9
CALL ibcmda (brd0, cmd$)
LET ibsta_i = 0
LET mask = 0 ! Set mask to return

! immediately.
Do while b_AND (ibsta_i, 256) <> 256

CALL eventest ! HIGH PRIORITY
! ROUTINE

CALL ibwait (brd0, mask)
LET ibsta_i = ibsta
IF ibsta <0 then GOSUB ERROR

WEND
PRINT "Asynchronous commands sent!"
LET mask = 16640
CALL ibwait (brd0, mask)
PRINT "Asynchronous transfer properly terminated."

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-11 NKR BASIC

IBCONFIG IBCONFIG

Purpose: Change the driver configuration parameters.

Format: CALL ibconfig (ud,option,value)

ud is a GPIB interface board or a device. option is used to select the
configurable item in the driver. The configurable item is set to the contents
of value . The previous contents of the configurable item is returned in
iberr . If ud is a GPIB interface board descriptor, option takes on the
values shown in Table 3-1. If ud is a device descriptor, option has the
values shown in Table 3-2.

Table 3-1. Board Configuration Options

Option Description

1 Primary Address. value is the new primary address of the
GPIB interface board (0–30). See IBPAD and Appendix A.

2 Secondary Address. value is the new secondary address of
the board (0, 96–126). See IBSAD and Appendix A.

3 Timeout Value. value is the new timeout value of the
board (0–17). See IBTMO.

4 Enable/disable END message on write operations. value is
the new EOT mode (0 = no END, non-zero = send END with
last byte). See IBEOT.

5 Parallel Poll Configure. value is the parallel poll configure
byte (0, 96–126). See IBPPC.

7 Enable/disable Automatic Serial Polling. If value is zero
(0), Autopolling is disabled. If value is non-zero,
Autopolling is enabled.

8 Use/do not use the NI-488 CIC protocol. If value is zero
(0), do not use the CIC protocol. If value is non-zero, use
the CIC protocol. See the Device Functions section in
Chapter 5 of the Software Reference Manual.

(continues)

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-12 © National Instruments Corp.

IBCONFIG (continued) IBCONFIG

Table 3-1 Board Configuration Options (continued)

Option Description

9 Enable/disable hardware interrupts. If value is zero (0),
disable GPIB interface board interrupts. If value is
non-zero, enable GPIB interface board interrupts. See
description of the IBCONF utility program in Chapter 2 of
the Software Reference Manual .

10 Request or release System Control. If value is zero (0),
functions requiring System Controller capability are not
allowed. If value is non-zero, functions requiring System
Controller capability are allowed. See IBRSC.

11 Assert/unassert REN. If value is non-zero, the IEEE 488
Remote Enable (REN) signal is asserted. If value is zero
(0), REN is unasserted. See IBSRE .

12 Terminate read when End-Of-String (EOS) character is
detected. If value is non-zero, read functions are
terminated when the EOS character is detected in the data
stream. If value is zero, EOS detection is disabled. See
IBEOS .

13 Assert EOI when sending EOS character. If value is zero
(0), do not send EOI with EOS. If value is non-zero, send
EOI with EOS. See IBEOS .

14 Use 7- / 8-bit EOS comparison. If value is zero, use
low-order 7 bits of EOS character for comparison. If value
is non-zero, use 8 bits. See IBEOS .

15 End-Of-String (EOS) character. value is the new EOS
character of the board (8 bits). See IBEOS .

(continues)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-13 NKR BASIC

IBCONFIG (continued) IBCONFIG

Table 3-1 Board Configuration Options (continued)

Option Description

16 Parallel Poll remote/local configuration. If value is zero,
the GPIB interface board uses IEEE 488 Parallel Poll (PP)
interface function subset PP1 (remote configuration by
external Controller). If value is non-zero, the board uses
PP subset PP2 (local configuration from your application
program: value is used as the local poll enable [lpe]
message). See IBPPC.

17 IEEE 488 bus handshake timing. If value is one (1),
normal timing is used for the IEEE 488 Source Handshake
T1 delay (≥ 2 µsec). If value is two (2), high-speed timing
is used for T1 (≥ 500 nsec). If value is three (3), very
high-speed timing is used (≥ 350 nsec).

18 Enable/disable direct memory access (DMA) transfers. If
value is zero (0), disable GPIB interface board DMA
transfers. If value is non-zero, enable GPIB interface
board DMA transfers. See the description of the IBCONF
utility program in Chapter 2 of the Software Reference
Manual.

19 Byte swapping on ibrd . If value is one (1), pairs of bytes
read off the bus are swapped before storing them in the ibrd
buffer. The transfer count must be even or ECAP will be
returned. In this case, the last two bytes of the buffer will be
invalid. If ECAP is returned and your buffer begins on an
odd address, start the buffer on an even address. If value is
zero (0), byte swapping on ibrd is disabled.

20 Byte swapping on ibwrt . If value is one (1), pairs of
bytes are swapped before they are written from the user's
buffer to the bus. The transfer count must be even or ECAP
will be returned. In some cases, the address of the buffer
must be even. If ECAP is returned and your buffer begins on
an odd address, start the buffer on an even address. If
value is zero (0), byte swapping on ibwrt is disabled.

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-14 © National Instruments Corp.

IBCONFIG (continued) IBCONFIG

Table 3-2. Device Configuration Options

Option Description

1 Primary Address. value is the new primary address of the
device (0–30). See IBPAD and Appendix A.

2 Secondary Address. value is the new secondary address of
the device (0, 96–126). See IBSAD and Appendix A.

3 Timeout Value. value is the new timeout value of the
device (0–17). See IBTMO .

4 Enable/disable END message on write operations. value is
the new EOT mode (0 = no END, non-zero = send END with
last byte). See IBEOT.

6 Repeat Addressing. If value is zero (0), disable repeat
addressing. If value is non-zero (1), enable repeat
addressing. See the description of the IBCONF utility in
Chapter 2 of the Software Reference Manual .

12 Terminate read when End-Of-String (EOS) character is
detected from this device. If value is non-zero, read
functions are terminated when the EOS character is detected
in the data stream received from the device. If value is
zero, EOS detection is disabled. See IBEOS .

13 Assert EOI when sending EOS character to this device. If
value is zero (0), do not send EOI with EOS. If value is
non-zero, send EOI with EOS. See IBEOS .

14 Use 7- / 8-bit EOS comparison. If value is zero, use low-
order 7 bits of EOS character for comparison. If value is
non-zero, use 8 bits. See IBEOS .

15 End-Of-String (EOS) character. value is the new EOS
character (8 bits) to use with this device. See IBEOS .

(continues)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-15 NKR BASIC

IBCONFIG (continued) IBCONFIG

Table 3-2. Device Configuration Options (continued)

Option Description

19 Byte swapping on ibrd. If value is one (1), pairs of
bytes read off the bus are swapped before storing them in the
ibrd buffer. The transfer count must be even or ECAP will
be returned. In this case, the last two bytes of the buffer will
be invalid. If ECAP is returned and your buffer begins on an
odd address, start the buffer on an even address. If value is
zero (0), byte swapping on ibrd is disabled.

20 Byte swapping on ibwrt . If value is one (1), pairs of
bytes are swapped before they are written from the user's
buffer to the bus. The transfer count must be even or ECAP
will be returned. In some cases, the address of the buffer
must be even. If ECAP is returned and your buffer begins on
an odd address, start the buffer on an even address. If
value is zero (0), byte swapping on ibwrt is disabled.

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-16 © National Instruments Corp.

IBCONFIG (continued) IBCONFIG

Device Function Example

Set up various configurable parameters in preparation for a device read.

DECLARE dev1, option, value
LET dev$ = "dev1"
CALL ibfind (dev$, dev1)
! Enable repeat addressing
LET option = 6
LET value = 1
CALL ibconfig (dev1, option, value)
! Set linefeed as the EOS character
LET option = 15
LET value = 10
CALL ibconfig (dev1, option, value)
! Use 7-bit comparison for EOS character
LET option = 14
LET value = 0
CALL ibconfig (dev1,option,value)
! Terminate reads on EOS
LET option = 12
LET value = 1
CALL ibconfig (dev1,option,value)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-17 NKR BASIC

IBCONFIG (continued) IBCONFIG

Board Function Example:

1. Set up various configurable parameters in preparation for a board read.

DECLARE integer gpib0, option, value
LET gpib$ = "gpib0"
CALL ibfind (gpib$, gpib0)
! Enable DMA transfers
LET option = 18
LET value = 1
CALL ibconfig (gpib0, option, value)
! Turn off Autopolling
LET option = 7
LET value = 0
CALL ibconfig (gpib0, option, value)
! Turn on interrupts
LET option = 9 : value = 1
CALL ibconfig (gpib0, option, value)

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-18 © National Instruments Corp.

IBCONFIG (continued) IBCONFIG

2. Enable automatic byte swapping of binary integer data.

DECLARE integer array (500), option, value, count

! Read in unswapped header data

LET header$ = repeat$(" ",10)
CALL ibrd (ud, header$)

! Arrange for byte swapping

LET option = 19
LET value = 1
CALL (ud, option, value)

! Read 1,000 bytes with automatic swapping

LET count = 1000
CALL ibrdi (ud, array (1), count)

! Disable swapping for subsequent reads

LET value = 0
CALL ibconfig (ud, option, value)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-19 NKR BASIC

IBDEV IBDEV

Purpose: Open and initialize an unused device when device name is
unknown.

Format: CALL ibdev (bdindex,pad,sad,tmo,eot,eos,ud)

bdindex is an index from 0 to [(number of boards) - 1] of the access
board with which the device descriptor must be associated. The arguments
pad , sad , tmo , eot , and eos dynamically set the software configuration
for the NI-488 I/O functions. These arguments configure the primary
address, secondary address, I/O timeout, asserting EOI on last byte of date
sourced, and the End-Of-String mode and byte, respectively. (Refer to
IBPAD , IBSAD , IBTMO , IBEOT, and IBEOS for more information on each
argument.) The device descriptor is returned in the variable ud .

The ibdev command selects an available device, opens it, and initializes it.
You can use this function in place of ibfind .

ibdev returns a device descriptor of the first unopened user configured
device that it finds. For this reason, it is very important to use ibdev only
after all of your ibfind calls have been made. This is the only way to
ensure that ibdev does not use a device that you plan to use via an
ibfind call. The ibdev function performs the equivalent ibonl to
open the device.

Note: The device descriptor of the NI-488.2 driver can remain open across
invocations of an application, so be sure to return the device
descriptor to the pool of available devices by calling ibonl with
v=0 when you are finished using the device. If you do not, that
device will not be available for the next ibdev call.

If the ibdev call fails, a negative number is returned in place of the device
descriptor. There are two distinct errors that can occur with the ibdev
call:

• If no device is available or the specified board index refers to a non-
existent board, ibdev returns the EDVR or ENEB error.

• If one of the last five parameters is an illegal value, ibdev returns
with a good board descriptor and the EARG error.

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-20 © National Instruments Corp.

IBDEV (continued) IBDEV

Device Function Example:

ibdev opens an available device and assigns it to access gpib0
(board = 0) with a primary address of 6 (pad = 6), a secondary address
of hex 67 (sad = 113), a timeout of 10 msec (tmo = 7), the END
message enabled (eot = 1) and the EOS mode disabled (eos = 0).

DECLARE integer bdindex, pad,sad,tmo
DECLARE integer eot,eos,ud,EDVR,EARG
LET EDVR = 0
LET EARG = 4
! Get a device descriptor associated with board 0.
LET bdindex = 0
LET pad = 6
LET sad = 113
LET tmo = 7
LET eot = 1
LET eos = 0
CALL ibdev (bdindex,pad,sad,tmo,eot,eos,ud)
IF ud < 0 ! Handle GPIB error here

IF iberr = EDVR then
! Bad bdindex or no devices available else if
! iberr = EARG then the call succeeded, but at
! least one of pad,sad,tmo,eos,eot is incorrect.

END IF
END IF

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-21 NKR BASIC

IBDMA IBDMA

Purpose: Enable or disable DMA.

Format: CALL ibdma (ud,v)

ud is an interface board. If v is non-zero, DMA transfers between the
GPIB board and memory are used for read and write operations. If v is
zero, programmed I/O is used.

If you enabled DMA at configuration time, this function can be used to
switch between programmed I/O and DMA using the selected channel. If
you disabled DMA at configuration time or if your computer does not have
DMA capability, calling this function with v equal to a non-zero value
results in an ECAP error.

The assignment made by this function remains in effect until ibdma is
called again, the ibonl or ibfind function is called, or the system is
restarted.

When ibdma is called and an error does not occur, the previous value of v
is stored in iberr .

Also refer to Table 1-2.

Board Function Examples:

1. Enable DMA transfers using the previously configured channel.

DECLARE integer brd0, v
LET v = 1 ! Any non-zero value will do.
CALL ibdma (brd0,v)

2. Disable DMAs and use programmed I/O exclusively.

LET v = 0
CALL ibdma (brd0, v)

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-22 © National Instruments Corp.

IBEOS IBEOS

Purpose: Change or disable End-Of-String termination mode.

Format: CALL ibeos (ud,v)

ud is a device or an interface board. v specifies the EOS character and the
data transfer termination method according to Table 3-3. ibeos is needed
only to alter the value from its configuration setting.

The assignment made by this function remains in effect until ibeos is
called again, the ibonl or ibfind function is called, or the system is
restarted.

When ibeos is called and an error does not occur, the previous value of v
is stored in iberr .

Table 3-3. Data Transfer Termination Method

Value of v

Method High Byte Low Byte

A. Terminate read when EOS is
detected. 00000100 EOS

B. Set EOI with EOS on write
function. 00001000 EOS

C. Compare all 8 bits of EOS
byte rather than low 7 bits
(all read and write functions). 00010000 EOS

Methods A and C determine how read operations terminate. If Method A
alone is chosen, reads terminate when the low seven bits of the byte that is
read match the low seven bits of the EOS character. If Methods A and C
are chosen, a full 8-bit comparison is used.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-23 NKR BASIC

IBEOS (continued) IBEOS

Methods B and C together determine when write operations send the END
message. If Method B alone is chosen, the END message is sent
automatically with the EOS byte when the low seven bits of that byte match
the low seven bits of the EOS character. If Methods B and C are chosen, a
full 8-bit comparison is used.

Note: Defining an EOS byte for a device or board does not cause the
driver to automatically send that byte when performing writes.
Your application program must include the EOS byte in the data
string it defines.

Device IBEOS Function

If ud is a device, the options coded in v are used for all device reads and
writes in which that device is specified.

Board IBEOS Function

If ud is a board, the options coded in v become associated with all board
reads and writes.

Refer also to IBEOT and Table 1-2.

Device Function Example:

Send END when the linefeed character (hex 0A) is written to the device
dvm .

DECLARE integer v, EOSV
LET EOSV = 10 ! EOS info for

! ibeos.

LET v = EOSV + 2048 ! + hex 800
CALL ibeos (dvm,v)
LET wrt$ = "123" & chr$(10) ! Data bytes to

! be written.
! eos character
! is the last byte

CALL ibwrt (dvm, wrt$)

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-24 © National Instruments Corp.

IBEOS (continued) IBEOS

Board Function Examples:

1. Program the interface board brd0 to terminate a read on detection of
the linefeed character (hex 0A) that is expected to be received within
200 bytes.

DECLARE integer v, EOSV
LET EOSV = 10
'
'
'
'
LET v = EOSV + 1024 ! + hex 400
CALL ibeos (brd0, v)
! Assume board has been addressed; do board read.
LET rd$ = space$(200)
CALL ibrd (brd0, rd$)
! The END bit in ibsta is set if the read terminated
! on the eos character. The value of ibcnt shows
the
! number of bytes received.

2. To program the interface board brd0 to terminate read operations on
the 8-bit value hex 82 rather than the 7-bit character hex 10, change
EOSV and v in Example 1.

LET EOSV = 130 ! hex 82
'
'
'
'
LET v = EOSV + 5120 ! + hex 1400
'
'

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-25 NKR BASIC

IBEOS (continued) IBEOS

3. To disable read termination on receiving the EOS character for
operations involving the interface board brd0 , change v in Example 1.

'
'
'
'
LET v = EOSV

4. Send END when the linefeed character is written for operations
involving the interface board brd0 .

DECLARE integer v, EOSV
EOSV = 10 ! EOS info for ibeos.
'
'
'
'
LET v = EOSV + 2048 ! + hex 800
CALL ibeos (brd0, v)
! Assume the board has been addressed; do board
write.
LET wrt$ = "123" & chr$(10)
CALL ibwrt (brd0, wrt$)

5. To send END with linefeeds and to terminate reads on linefeeds for
operations involving the interface board BRD0 , change v in Example 4.

'
'
LET v = EOSV + 3072 ! + hex C00

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-26 © National Instruments Corp.

IBEOT IBEOT

Purpose: Enable or disable automatic END termination message on
write operations.

Format: CALL ibeot (ud,v)

ud is a device or an interface board. If v is non-zero, the END message is
sent automatically with the last byte of each write operation. If v is zero,
END is not automatically sent. ibeot is needed only to alter the value
from the configuration setting. (In the default configuration, this feature is
enabled.)

The END message is the assertion of the GPIB EOI signal. If the automatic
END termination message is enabled, it is not necessary to use the EOS
character to identify the last byte of a data string. ibeot is used primarily
to send variable length binary only data.

The sending of END with the EOS character is determined by the ibeos
function and is not affected by the ibeot function.

The assignment made by this function remains in effect until ibeot is
called again, the ibonl or ibfind function is called, or the system is
restarted.

When ibeot is called and an error does not occur, iberr is returned with
a one if automatic END message was previously enabled, or with a zero if it
was previously disabled.

Device IBEOT Function

If ud is a device, the END termination message method that is selected is
used on all device I/O write operations to that device.

Board IBEOT Function

If ud is an interface board, the END termination message method that is
selected is used on all board I/O write operations, regardless to which
device is written.

Refer also to IBEOS and Table 1-2.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-27 NKR BASIC

IBEOT (continued) IBEOT

Device Function Example:

Send the END message with the last byte of all subsequent writes to the
device plotter .

DECLARE integer v, plotter
LET plotter$ = "DEV5"
CALL ibfind (plotter$, plotter)
LET v = 1 ! Enable sending of END.
CALL ibeot (plotter, v)
! It is assumed that wrt$ contains the data to be
! written to the GPIB.
CALL ibwrt (plotter, wrt$)

Board Function Examples:

1. Stop sending END with the last byte for calls directed to the interface
board brd0 .

DECLARE integer v
LET v = 0 ! Disable sending of END.
CALL ibeot (brd0, v)

2. Send the END message with the last byte of all subsequent write
operations directed to the interface board brd0 .

LET v = 1 ! Enable sending of END.
CALL ibeot (brd0, v)
! It is assumed that wrt$ contains the data to be
! written and all Listeners have been addressed.
CALL ibwrt (brd0, wrt$)

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-28 © National Instruments Corp.

IBFIND IBFIND

Purpose: Open device and return the unit descriptor associated with the
given name.

Format: CALL ibfind (udname$,ud)

udname is a string containing a default or configured device or board
name. ud is a variable containing the unit descriptor returned by ibfind .

ibfind returns a number that is used in each function to identify the
particular device or board that is used for that function. Calling ibfind is
required to associate a variable name in the application program with a
particular device or board name. The name used in the udname argument
must match the default or configured device or board name. The number
referred to throughout this manual as a unit descriptor is returned here in the
variable ud .

Note: For board calls, the unit descriptor may be substituted with an
integer board of zero (0) or one (1). This feature allows any of the
NI-488 board functions to be used compatibly with the NI-488.2
routines described in Chapter 2, NI-488.2 Software Routine
Descriptions.

ibfind performs the equivalent of ibonl to open the specified device or
board and to initialize software parameters to their default configuration
settings. Use a variable name close to the actual name of the device or
board in order to simplify programming effort.

The unit descriptor is valid until ibonl is used to place that device or
interface board offline.

If the ibfind call fails, a negative number is returned in place of the unit
descriptor. The most probable reason for a failure is that the string
argument passed into ibfind does not exactly match the default or
configured device or board name.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-29 NKR BASIC

IBFIND (continued) IBFIND

Device Function Example:

Assign the unit descriptor associated with the device DEV4 (Device
number 4) to dvm.

DECLARE integer dvm
LET udname$ = "DEV4" ! Device name assigned

! at configuration time.
CALL ibfind (udname$, dvm)
IF dvm < 0 GOTO 1000 ! ERROR ROUTINE

Board Function Example:

Assign the unit descriptor associated with the interface board GPIB0 to
the variable brd .

DECLARE integer brd0
LET udname$ = "GPIB0" ! Board name assigned

! at configuration time.
CALL ibfind (udname$, brd0)
IF brd0 < 0 GOTO 1000 ! ERROR ROUTINE

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-30 © National Instruments Corp.

IBGTS IBGTS

Purpose: Go from Active Controller to Standby.

Format: CALL ibgts (ud,v)

ud is an interface board. If v is non-zero, the GPIB board shadow
handshakes the data transfer as an Acceptor, and when the END message is
detected, the GPIB board enters a Not Ready For Data (NRFD) handshake
holdoff state on the GPIB. If v is zero, no shadow handshake or holdoff is
done.

The ibgts function causes the GPIB board to go to the Controller Standby
state and to unassert the ATN signal if it initially is the Active Controller.
ibgts permits the GPIB Controller board to go to standby and to therefore
allow transfer between GPIB devices to occur without its intervention.

If the shadow handshake option is activated, the GPIB board participates in
data handshake as an Acceptor without actually Reading the data. It
monitors the transfers for the END message and holds off subsequent
transfers. Through this mechanism, the GPIB board can take control
synchronously on a subsequent operation such as ibcmd or ibrpp .

Before performing an ibgts with a shadow handshake, call the ibeos
function to establish the proper EOS character or to disable EOS detection.

The ECIC error results if the GPIB board is not CIC.

Refer also to IBCAC .

In the example that follows, GPIB commands and addresses are coded as
printable ASCII characters.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-31 NKR BASIC

IBGTS (continued) IBGTS

Board Function Example:

Turn the ATN line off with the ibgts function after unaddressing all
Listeners with the Unlisten (UNL or ASCII ?) command, addressing a
Talker at hex 46 (ASCII F) and addressing a Listener at hex 31
(ASCII 1) to allow the Talker to send data messages.

LET cmd$ = "?F1" ! UNL MTA1 MLA2
CALL ibcmd (brd0, cmd$)
LET v = 1 ! Listen in continuous
mode.
CALL ibgts (brd0, v)

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-32 © National Instruments Corp.

IBIST IBIST

Purpose: Set or clear individual status bit for Parallel Polls.

Format: CALL ibist (ud,v)

ud is an interface board. If v is non-zero, the individual status bit is set. If
v is zero, the bit is cleared.

The ibist function is used when the GPIB board participates in a parallel
poll that is conducted by another device that is the Active Controller. The
Active Controller conducts a parallel poll by asserting the EOI signal to
send the Identify (IDY) message. While this message is active, each device
which has been configured to participate in the poll responds by asserting a
predetermined GPIB data line either true or false, depending on the value of
its local ist bit. The GPIB board, for example, can be assigned to drive the
DIO3 data line true if ist=1 and false if ist=0; conversely, it can be assigned
to drive DIO3 true if ist=0 and false if ist=1.

The relationship between the value of ist, the line that is driven, and the
sense at which the line is driven is determined by the Parallel Poll Enable
(PPE) message in effect for each device. The GPIB board is capable of
receiving this message either locally, via the ibppc function, or remotely,
via a command from the Active Controller. Once the PPE message is
executed, the ibist function changes the sense at which the line is driven
during the parallel poll, and in this fashion the GPIB board can convey a
1-bit, device-dependent message to the Controller.

When ibist is called and an error does not occur, the previous value of ist
is stored in iberr .

Refer also to IBPPC.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-33 NKR BASIC

IBIST (continued) IBIST

Board Function Examples:

1. Set the individual status bit.

DECLARE integer v
LET v = 1 ! Any non-zero value will do.
CALL ibist (brd0, v)

2. Clear the individual status bit.

DECLARE integer v
LET v = 0
CALL ibist (brd0, v)

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-34 © National Instruments Corp.

IBLINES IBLINES

Purpose: Return the status of the GPIB control lines.

Format: CALL iblines (ud,clines)

ud is a board descriptor. A valid mask is returned along with the GPIB
control line state information in clines. The low-order byte (bits 0
through 7) of clines contains a mask indicating the capability of the
GPIB interface board to sense the status of each GPIB control line. The
upper byte (bits 8 through 15) contains the GPIB control line state
information. The pattern of each byte is as follows:

7 6 5 4 3 2 1 0

EOI ATN SRQ REN IFC NRFD NDAC DAV

To determine if a GPIB control line is asserted, first check the appropriate
bit in the lower byte to determine if the line can be monitored. If the bit can
be monitored (indicated by a 1 in the appropriate bit position), then check
the corresponding bit in the upper byte. If the bit is set (1), the
corresponding control line is asserted. If the bit is clear (0), the control line
is unasserted.

Device/Board Function Example:

Test for Remote Enable (REN):

DECLARE integer gpib0, clines
LET udname$ = "GPIB0"
CALL ibfind (udname$, gpib0)
CALL iblines (gpib0, clines)
LET ren_i = clines
IF b_AND (ren_i, 16) <> 16 THEN GOTO 800
IF b_AND (ren_i, 4096) = 4096 THEN GOTO 900
PRINT "REN is asserted!"
STOP
800 PRINT "GPIB board is unable to monitor REN."
STOP
900 PRINT "REN is not asserted!"
STOP
END

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-35 NKR BASIC

IBLN IBLN

Purpose: Check for the presence of a device on the bus.

Format: CALL ibln (ud,pad,sad,listen)

ud is a board or device descriptor. pad (legal values are 0 to 30) is the
primary GPIB address of the device. sad (legal values are hex 60 to hex
7e, or NO .SAD , or ALL . SAD) is the secondary GPIB address of the device.

The function ibln returns a non-zero value in the variable listen if a
Listener is at the specified GPIB address.

Notice that the sad parameter can be a value in hex 60 to hex 7e or one of
the constants NO .SAD or ALL .SAD . You can test for a Listener using only
GPIB primary addressing by making sad=NO .SAD , or you can test all
secondary addresses associated with a single primary address (a total of 31
device addresses) when you set sad= ALL .SAD . In this case, ibln sends
the primary address and all secondary addresses before waiting for NDAC
to settle. If the listen flag is true, you must search only the 31 secondary
addresses associated with a single primary address to locate the Listener.

These two special constants can be used in place of a secondary address are
as follows:

NO .SAD = 0
ALL .SAD = -1

If ud is a device, ibln tests for a Listener on the board associated with the
given device.

Refer also to IBDEV and IBFIND .

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-36 © National Instruments Corp.

IBLN (continued) IBLN

Device Function Example

Test for a GPIB Listener at pad 2 and pad hex 60 :

DECLARE integer ud,pad,sad,listen
LET udname$ = "DEV1"
CALL ibfind (udname$, ud)
LET pad = 2
LET sad = 96
CALL ibln (ud,pad,sad,listen)
if listen = 0
! error: no device is at this address.

Board Function Example

Test for a GPIB Listener at pad 2 and sad hex 60 :

DECLARE integer ud, pad, sad, listen
LET udname$ = "GPIB0"
CALL ibfind (udname$, ud)
CALL ibln (ud, pad, sad, listen)
if listen = 0
! error: no device is at this address.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-37 NKR BASIC

IBLOC IBLOC

Purpose: Go To Local state.

Format: CALL ibloc (ud)

ud is a device or an interface board.

Unless the Remote Enable line has been unasserted with the ibsre
function, all device functions automatically place the specified device in
remote program mode. ibloc is used to move devices temporarily from a
remote program mode to a local mode until the next device function is
executed on that device.

Device IBLOC Function

ibloc places the device indicated in local mode by calling ibcmd to send
the command sequence:

1. Talk address of the access board

2. Secondary address of the device, if necessary

3. Unlisten (UNL)

4. Listen address of the device

5. Secondary address of the access board

6. Go To Local (GTL)

Other command bytes can be sent as necessary.

Board IBLOC Function

If ud is an interface board, the board is placed in a local state by sending
the local message Return To Local (RTL), if it is not locked in remote
mode. The LOK bit of the status word indicates whether the board is in a
lockout state. The ibloc function is used to simulate a front panel RTL
switch when the computer is used as an instrument.

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-38 © National Instruments Corp.

IBLOC (continued) IBLOC

Device Function Example:

Return the device dvm to local state.

DECLARE integer dvm
CALL ibloc (dvm)

Board Function Example:

Return the interface board brd0 to local state.

DECLARE integer brd0
CALL ibloc (brd0)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-39 NKR BASIC

IBONL IBONL

Purpose: Place the device or interface board online or offline.

Format: CALL ibonl (ud,v)

ud is a device or an interface board. If v is non-zero, the device or
interface board is enabled for operation (online). If v is zero, it is reset
(offline).

After a device or an interface board is taken offline, the handle (ud) is no
longer valid. Before accessing the board or device again, you must re-
execute an ibfind or ibdev call to open the board or device.

Calling ibonl with v non-zero restores the default configuration settings
of a device or interface board.

Device Function Examples:

1. Disable the device plotter .

DECLARE integer v
LET v = 0
CALL ibonl (plotter, v)

2. Enable the device plotter after taking it offline temporarily.

DECLARE integer v
LET udname$ = "PLOTTER" ! Device name assigned at

! configuration time.
CALL ibfind (udname$, plotter)
! ibonl with v non-zero is automatically
! performed as part of ibfind.

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-40 © National Instruments Corp.

IBONL (continued) IBONL

3. Reset the configuration settings of the device plotter to their default
settings.

DECLARE integer v
LET v = 1
CALL ibonl (plotter, v)

Board Function Examples:

1. Disable the interface board brd0 .

LET v = 0
CALL ibonl (brd0, v)

2. Enable the interface board brd0 after taking it offline temporarily.

DECLARE integer brd0
LET udname$ = "GPIB0" ! Board name assigned at

! configuration time.
CALL ibfind (udname$, brd0)
! ibfind automatically places board online.

3. Reset the configuration settings of the interface board brd0 to their
default settings.

DECLARE integer
LET v = 1
CALL ibonl (brd0, v)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-41 NKR BASIC

IBPAD IBPAD

Purpose: Change Primary Address.

Format: CALL ibpad (ud,v)

ud is a device or an interface board. v is the primary GPIB address.
ibpad is needed only to alter the configuration setting.

There are 31 valid GPIB addresses, ranging from 0 to hex 1E; that is, the
lower five bits of v are significant and they must not all be ones. An EARG
error results if the value of v is not in this range.

The assignment made by this function remains in effect until ibpad is
called again, the ibonl or ibfind function is called, or the system is
restarted.

When ibpad is called and an error does not occur, the previous primary
address is stored in iberr .

Device IBPAD Function

If ud is a device, ibpad determines the talk and listen addresses based on
the value of v. A device listen address is formed by adding hex 20 to the
primary address; the talk address is formed by adding hex 40 to the primary
address. A primary address of hex 10 corresponds to a listen address of hex
30 and a talk address of hex 50. The actual GPIB address of any device is
set within that device, either with hardware switches or a software program.
Refer to the device documentation for instructions.

Board IBPAD Function

If ud is a board, ibpad programs the board to respond to the address
indicated by v.

Refer also to IBSAD and IBONL .

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-42 © National Instruments Corp.

IBPAD (continued) IBPAD

Device Function Example:

Change the primary GPIB address of plotter to hex A

DECLARE integer v
LET v = 10 ! Lower 5 bits of GPIB
address.
CALL ibpad (plotter, v)

Board Function Example:

Change the primary GPIB address of the board brd0 to hex 7.

DECLARE integer v
LET v = 7
CALL ibpad (brd0, v)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-43 NKR BASIC

IBPCT IBPCT

Purpose: Pass control.

Format: CALL ibpct (ud)

ud is a device.

The ibpct function passes CIC authority to the specified device from the
access board assigned to that device. The board automatically goes to
Controller Idle State (CIDS). The function assumes that the device has
Controller capability.

ibpct calls the board ibcmd function to send the following commands:

• Unlisten (UNL)

• Listen address of the access board

• Talk address of the device

• Secondary address of the device, if applicable

• Take Control (TCT)

Other command bytes can be sent as necessary.

Refer to IBCMD for additional information.

Device Function Example:

Pass control to the device ibmxt .

DECLARE integer ibmxt
CALL ibpct (ibmxt)

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-44 © National Instruments Corp.

IBPPC IBPPC

Purpose: Parallel Poll Configure.

Format: CALL ibppc (ud,v)

ud is a device or an interface board. v must be a valid parallel poll
enable/disable command or zero (0).

ibppc returns the previous value of v in iberr if an error does not occur.

Device IBPPC Function

If ud is a device, the ibppc function enables or disables the device from
responding to parallel polls.

ibppc calls the board ibcmd function to send the following commands:

• Talk address of the access board

• Unlisten

• Listen address of the device

• Secondary address of the device, if applicable

• Parallel Poll Configure (PPC)

• Parallel Poll Enable (PPE) or Disable (PPD)

Other command bytes are sent if necessary.

Each of the 16 PPE messages specifies the GPIB data line (DIO1 through
DIO8) and sense (one or zero) that the device must use when responding to
a parallel poll. The assigned message is interpreted by the device along
with the current value of the individual status (ist) bit to determine if the
selected line is driven true or false. For example, if the PPE=hex 64, DIO5
is driven true if ist=0 and false if ist=1, and if PPE=hex 68, DIO1 is driven
true if ist=1 and false if ist=0. Any PPD message or zero value cancels the
PPE message in effect. You must know which PPE and PPD messages are
sent and determine what the responses indicate.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-45 NKR BASIC

IBPPC (continued) IBPPC

Board IBPPC Function

If ud is an interface board, the board itself is programmed to respond to a
parallel poll by setting its Local Poll Enable (LPE) message to the value
of v.

Refer also to IBCMD and IBIST.

Device Function Examples:

1. Configure the device dvm to respond to a parallel poll by sending data
line DIO5 true (ist=0).

DECLARE integer v
LET v = 100 ! hex 64
CALL ibppc (dvm, v)

2. Configure the device dvm to respond to a parallel poll by sending data
line DIO1 true (ist=1).

DECLARE integer v
LET v = 104 ! hex 68
CALL ibppc (dvm, v)

3. Cancel the parallel poll configuration of the device dvm.

DECLARE integer v
LET v = 112 ! hex 70
CALL ibppc (dvm, v)

Board Function Example:

Configure the interface board brd0 to respond to a parallel poll by
sending data line DIO5 true (ist=0).

DECLARE integer v
LET v = 100 ! hex 64
CALL ibppc (brd0, v)

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-46 © National Instruments Corp.

IBRD IBRD

Purpose: Read data from a device to a string.

Format: CALL ibrd (ud,rd$)

ud is a board or a device. rd$ is the storage buffer for data.

ibrd terminates when one of the following events occurs:

• The allocated buffer becomes full.

• An error is detected.

• The time limit is exceeded.

• An END message is detected.

• An EOS character is detected (if this option is enabled).

Transfer count may be less than expected if any of these terminating events,
except for the first event, occurs.

When ibrd completes, ibsta holds the latest device status, ibcnt is the
16-bit representation of the number of bytes read, and, if the ERR bit in
ibsta is set, iberr is the first error detected.

Device IBRD Function

If ud is a device, the device is addressed to talk and the access board is
addressed to listen. Then the data is read from the device.

Board IBRD Function

If ud is an interface board, the ibrd function reads from a GPIB device
that is assumed to be already properly addressed by the CIC. In addition to
the termination conditions previously listed, a board ibrd function also
terminates if a Device Clear (DCL) or Selected Device Clear (SDC)
command is received from the CIC.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-47 NKR BASIC

IBRD (continued) IBRD

If the access board is Active Controller, the board is placed in Standby
Controller state with ATN off even after the operation completes. If the
access board is not Active Controller, ibrd commences immediately.

If the board is CIC, the ibcmd function must be used prior to ibrd to
address a device to talk and the board to listen.

An EADR error results if the board is CIC but has not been addressed to
listen with the ibcmd function. An EABO error results if, for any reason,
ibrd does not complete within the time limit.

Device Function Example:

Read 100 bytes of data from a device.

DECLARE integer brd0, pad, sad, tmo
DECLARE integer eot, eos, ud
LET brd0 = 0
LET pad = 10
LET sad = 0
LET tmo = 15
LET eot = 1
LET eos = 0
CALL ibdev (brd0, pad, sad, tmo, eot, eos, ud)
LET rd$ = repeat$(" ",100)
CALL ibrd (ud, rd$)

Board Function Examples:

1. Read 100 bytes of data from a device at talk address hex 4C (ASCII L).
The listen address of the board is hex 20 (ASCII space).

DECLARE integer brd0
LET brd0$ = "GPIB0"
CALL ibfind (brd0$, brd0)
LET cmd$ = "? L" ! UNL MLA TAD
CALL ibcmd (brd0, cmd$)
LET rd$ = repeat$(" ",56)
CALL ibrd (brd0, rd$)

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-48 © National Instruments Corp.

IBRD (continued) IBRD

2. To terminate the read on an EOS character, see the IBEOS board
function example.

3. To enable automatic byte swapping of binary integer data, see the
IBCONFIG board function example.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-49 NKR BASIC

IBRDA IBRDA

Purpose: Read data asynchronously to string.

Format: CALL ibrda (ud,rd$)

ud is a device or an interface board. rd$ identifies the storage buffer for
data bytes that are read from the GPIB.

The ibrda function reads up to 132 bytes of data from a GPIB device.
The maximum string length can be increased to a value less than 32767.

ibrda is used in place of ibrd when the application program must
perform other functions while processing the GPIB I/O operation. ibrda
returns immediately after starting the I/O operation.

The three asynchronous I/O calls (ibcmda, ibrda , and ibwrta) are
designed to allow an application to perform other functions (non-GPIB
functions) while processing the I/O. Once the asynchronous I/O call has
been initiated, further GPIB calls involving the device or access board are
not allowed until the I/O has completed and the GPIB driver and the
application have been resynchronized.

Resynchronization can be accomplished by using one of the following three
functions:

Note: Resynchronization is only successful if the ibsta returned
contains CMPL.

• ibwait (mask
contains CMPL) - The driver and application are synchronized.

• ibstop - The asynchronous I/O is canceled, and the driver
and application are synchronized.

• ibonl - The asynchronous I/O is canceled, the interface
has been reset, and the driver and application are
synchronized.

The only other GPIB call that is allowed during asynchronous I/O is the
ibwait function (mask is arbitrary). Any other GPIB call involving the
device or access board returns the EOIP error.

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-50 © National Instruments Corp.

IBRDA (continued) IBRDA

Device IBRDA Function

If ud is a device, the device is addressed to talk and the access board is
addressed to listen. Then the data is read from the device. Other command
bytes may be sent as necessary.

Board IBRDA Function

If ud is an interface board, the ibrda function attempts to read from a
GPIB device that is assumed to be already properly addressed.

If the board is CIC, the ibcmd function must be called prior to ibrda to
address the device to talk and the board to listen. Otherwise, the actual CIC
must perform the addressing.

If the board is Active Controller, the board is first placed in Standby
Controller state with ATN off even after the read operation completes. If
the board is not the Active Controller, the read operation commences
immediately.

An EADR error results if the interface board is CIC but has not addressed
itself to listen with the ibcmd function.

Device Function Example:

Read 56 bytes of data from the device tape while performing other
processing.

! Perform device read.
LET rd$ = repeat$(" ",56)
CALL ibrda (tape, rd$)
LET mask = 16640 ! TIMO CMPL
! Perform other processing here then
! wait for I/O completion or a timeout.
CALL ibwait (tape, mask)
! Check ibsta to see what the read terminated:
! on CMPL, END, TIMO, or ERR. (not done here)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-51 NKR BASIC

IBRDA (continued) IBRDA

Board Function Examples:

1. Read 56 bytes of data from a device at talk address hex 4C (ASCII L)
and then unaddress it (the GPIB board listen address is hex 20 or ASCII
space).

! Perform addressing in preparation for board read.
LET cmd$ = "? L" ! UNL MLA TAD
CALL ibcmd (brd0, cmd$)
! Perform board read.
LET rd$ = space$(56)
CALL ibrda (brd0, rd$)
! Perform other processing here, then wait for
! I/O completion or a timeout.
LET mask = hex 16640 ! TIMO CMPL
CALL ibwait (brd0, mask)
! ibsta shows how the read terminated: on
! CMPL, END, TIMO, or ERR.

2. To terminate the read on an EOS character, see the IBEOS Board
Function Examples.

3. To enable automatic byte swapping of binary integer data, see the
IBCONFIG Board Function Example.

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-52 © National Instruments Corp.

IBRDF IBRDF

Purpose: Read data from GPIB into file.

Format: CALL ibrdf (ud,flname$)

ud is a device or an interface board. flname is the filename under which
the data is stored. flname can be up to 50 characters long, including a
drive and path designation.

ibrdf automatically opens the file as a binary file (not as a character file).
If the file does not exist, ibrdf creates it. On exit, ibrdf closes the file.

An EFSO error results if it is not possible to open, create, seek, write, or
close the specified file.

The ibrdf function terminates on any of the following events:

• An error is detected.

• The time limit is exceeded.

• An END message is detected.

• An EOS character is detected (if this option is enabled).

• A Device Clear (DCL) or Selected Device Clear (SDC) command is
received from another device which is the CIC.

After termination, ibcnt is the number of bytes read.

When the device ibrdf function returns, ibsta holds the latest device
status, ibcnt is the 16-bit representation of the number of bytes read, and
if the ERR bit in ibsta is set, iberr is the first error detected.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-53 NKR BASIC

IBRDF (continued) IBRDF

Device IBRDF Function

If ud is a device, the same board functions as the device ibrd function are
performed automatically. The ibrdf function terminates on similar
conditions as ibrd .

Board IBRDF Function

If ud is an interface board, the board ibrd function reads from a GPIB
device that is assumed to be already properly addressed.

An EADR error results if the board is CIC but has not been addressed to
listen with the ibcmd function. An EABO error results if, for any reason,
the read operation does not complete within the time limit. An EABO error
also results if the device that is to talk is not addressed and/or the operation
does not complete within the time limit for whatever reason.

Device Function Example:

Read data from the device rdr into the file RDGS on disk drive B .

LET flname$ = "B:RDGS"
CALL ibrdf (rdr, flname$)
! ibsta and ibcnt show the results of the
! read operation.

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-54 © National Instruments Corp.

IBRDF (continued) IBRDF

Board Function Example:

Read data from a device at talk address hex 4C (ASCII L) to the file
RDGS on the current disk drive and then unaddress it (the GPIB board
listen address is hex 20 or ASCII space).

! Perform addressing in preparation for board read.
LET cmd$ = "?L " ! UNL TAD MLA
CALL ibcmd (brd0, cmd$)
! Perform board read.
LET flname$ = "RDGS"
CALL ibrdf (brd0, flname$)
! ibsta and ibcnt show the results of the read
! operation (not done here).

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-55 NKR BASIC

IBRDI IBRDI

Purpose: Read data to integer array.

Format: CALL ibrdi (ud,iarr(1),cnt)

ud is a device or an interface board. iarr is an integer array into which
data is read from the GPIB. cnt is the maximum number of bytes to be
read.

ibrdi is similar to the ibrd function, which reads data into a character
string variable. As the data is read, each byte pair is treated as an integer
and stored in iarr .

Unlike ibrd , ibrdi stores the data directly into an integer array. No
integer conversion of the data is needed for arithmetic operations.

Refer to IBRD and tothe section titled NKR BASIC NI-488 I/O Calls and
Functions in Chapter 1, General Information .

Device Function Example:

Read bytes of data from the device tape and store in the integer array
rd .

DECLARE integer cnt, rd(256), tape, pad, sad
DECLARE integer tmo, eot, eos, brd
LET brd = 0
LET pad = 6
LET sad = 0
LET tmo = 14
LET eot = 1
LET eos = 0
CALL ibdev (brd, pad, sad, tmo, eot, eos, tape)
! cnt is equal to array size multiplied by 2.
LET cnt=512
CALL ibrdi (tape, rd(1), cnt)

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-56 © National Instruments Corp.

IBRDI (continued) IBRDI

Board Function Examples:

1. Read 56 bytes of data into the integer array rd from a device at talk
address hex 4C (ASCII L). (The GPIB board listen address is hex 20 or
ASCII space.)

DECLARE integer cnt, rd(28)
! Perform addressing in preparation for board read.
LET cmd$ = "? L" ! UNL MLA TAD
CALL ibcmd (brd0, cmd$)
! cnt is equal to array size multiplied by 2.
LET cnt = 56
CALL ibrdi (brd0, rd(1), cnt)
! ibsta shows how the read terminated:
! CMPL, END, TIMO, or ERR. Data is stored in rd().

2. To terminate the read on an EOS character, see IBEOS examples.

3. To enable automatic byte swapping of binary integer data, see the
IBCONFIG Board Function Example.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-57 NKR BASIC

IBRDIA IBRDIA

Purpose: Read data asynchronously to integer array.

Format: CALL ibrdia (ud,iarr(1),cnt)

ud is a device or an interface board. iarr is an integer array into which
data is read asynchronously from the GPIB. cnt specifies the maximum
number of bytes to be read.

ibrdia is similar to the ibrda function, which reads data into a character
string variable. As the data is read, each byte pair is treated as an integer
and stored in iarr .

Unlike ibrda , ibrdia stores the data directly into an integer array. No
integer conversion of the data is needed for arithmetic operations.

Refer to IBRDA and tothe section titled NKR BASIC NI-488 I/O Calls and
Functions in Chapter 1, General Information .

Device Function Example:

Read 56 bytes of data into the integer array rd from the device tape
while performing other processing.

DECLARE integer cnt, rd(28)
! cnt is equal to array size multiplied by 2.
LET cnt = 56
CALL ibrdia (tape, rd(0), cnt)
LET mask = 16640 ! TIMO CMPL
! Perform other processing here then wait for I/O
! completion or a timeout.
CALL ibwait (tape, mask)
! Check ibsta to see what the read terminated:
! on CMPL, END, TIMO, or ERR (not done here).

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-58 © National Instruments Corp.

IBRDIA (continued) IBRDIA

Board Function Examples:

1. Read 56 bytes of data into the integer array rd from a device at talk
address hex 4C (ASCII L). (The GPIB board listen address is hex 20
or ASCII space.)

DECLARE integer cnt, rd(28), mask
! Perform addressing in preparation for board read.
LET cmd$ = "? L" ! UNL MLA TAD
CALL ibcmd (brd0, cmd$)
! Perform board read.
! cnt is equal to array size multiplied by 2.
LET cnt = 16640
CALL ibrdia (brd0, rd(1), cnt)
LET mask = 16640 ! TIMO CMPL
! Perform other processing here, then wait for I/O
! completion or a timeout.
CALL ibwait (brd0, mask)
! ibsta shows how the read terminated: CMPL, END,
! TIMO, or ERR. If CMPL or ERR are not set,
! continue processing.
LET ibsta_i = ibsta
IF b_ AND (ibsta_i, -32512) <> 0 GOTO 200
! Properly terminate the asynchronous I/O
LET mask = 16640
CALL ibwait (brd0, mask)
! Data is stored in rd$.

2. To terminate the read on an EOS character, see the IBEOS Board
Function Example .

3. To enable automatic byte swapping of binary integer data, see the
IBCONFIG Board Function Example.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-59 NKR BASIC

IBRPP IBRPP

Purpose: Conduct a Parallel Poll.

Format: CALL ibrpp (ud,ppr)

ud is a device or an interface board. ppr stores the parallel poll response.

Device IBRPP Function

If ud is a device, all devices on its GPIB are polled in parallel using the
access board of that device. This is done by executing the board ibrpp
function with the appropriate access board specified.

Board IBRPP Function

If ud is a board, the ibrpp function causes the identified board to conduct
a parallel poll of previously configured devices by sending the IDY
message (ATN and EOI both asserted) and reading the response from the
GPIB data lines.

An ECIC error results if the GPIB board is not CIC. If the GPIB board is
Standby Controller, it takes control and asserts ATN (becomes Active) prior
to polling. It remains Active Controller afterward.

In the examples that follow, some of the GPIB commands and addresses are
coded as printable ASCII characters. The simplest means of specifying
values is to use printable ASCII characters to represent values. When
possible, ASCII characters should be used. Refer to Appendix A for
conversions of numeric values to ASCII characters.

Some commands relevant to parallel polls are shown in Table 3-4.

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-60 © National Instruments Corp.

IBRPP (continued) IBRPP

Table 3-4. Parallel Poll Commands

Command Hex Value Meaning

PPC 05 Parallel Poll Configure

PPU 15 Parallel Poll Unconfigure

PPE 60 Parallel Poll Enable

PPD 70 Parallel Poll Disable

Parallel poll constants are defined in the file decl.b .

Device Function Example:

Remotely configure the device lcrmtr to respond positively on DI03
if its individual status bit is 1, and then parallel poll all configured
devices.

DECLARE integer v, ppr
LET v = 106 ! hex 6A
CALL ibppc (lcrmtr, v)
CALL ibrpp (lcrmtr, ppr)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-61 NKR BASIC

IBRPP (continued) IBRPP

Board Function Examples:

1. Remotely configure the device brd0 at listen address hex 23
(ASCII #) to respond positively on DIO3 if its individual status bit is 1,
and then parallel poll all configured devices.

DECLARE integer ppr
! Send LAD, PPC, PPE, and UNL.
LET cmd$ = "#" & chr$(5) & "j?"
CALL ibcmd (brd0, cmd$)
CALL ibrpp (brd0, ppr)

2. Disable and unconfigure all GPIB devices from parallel polling using
the PPU (hex 15) command.

DECLARE integer ppr
LET cmd$ = chr$(21) ! PPU
CALL ibcmd (brd0, cmd$)

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-62 © National Instruments Corp.

IBRSC IBRSC

Purpose: Request or release System Control.

Format: CALL ibrsc (ud,v)

ud is an interface board. If v is non-zero, functions requiring System
Controller capability are subsequently allowed. If v is zero (0), functions
requiring System Controller capability are not allowed.

The ibrsc function is used to enable or disable the capability of the GPIB
board to send the Interface Clear (IFC) and Remote Enable (REN) messages
to GPIB devices using the ibsic and ibsre functions, respectively. The
interface board must not be System Controller to respond to IFC sent by
another Controller.

In most applications, the GPIB board is always the System Controller. In
other applications, the GPIB board is never the System Controller. In either
case, the ibrsc function is used only if the computer is not going to be
System Controller for the duration of the program execution. While the
IEEE 488 standard does not specifically allow schemes in which System
Control can be passed dynamically from one device to another, the ibrsc
function would be used in such a scheme.

When ibrsc is called and an error does not occur, iberr is set to one (1)
if the interface board was previously System Controller and zero (0) if it
was not.

Refer also to Table 1-2.

Board Function Example:

Request to be System Controller if the interface board brd0 is not
currently so designated.

DECLARE integer v
LET v = 1 ! Any non-zero value will do.
CALL ibrsc (brd0, v)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-63 NKR BASIC

IBRSP IBRSP

Purpose: Return serial poll byte.

Format: CALL ibrsp (ud,spr)

ud is a device. spr stores the serial poll response.

The ibrsp function is used to serial poll one device and obtain its status
byte or to obtain a previously stored status byte. If bit 6 (the hex 40 bit) of
the response is set, the device is requesting service.

When the automatic serial polling feature is enabled, the specified device
may have been polled previously. If it has been polled and a positive
response was obtained, the RQS bit of ibsta is set on that device. In this
case, ibrsp returns the previously acquired status byte. If the RQS bit of
ibsta is not set during an automatic poll, it serial polls the device.

When a poll is actually conducted, the specific sequence of events is as
follows:

1. Unlisten (UNL)

2.Controllers Listen Address

3.Secondary address of the access board, if applicable

4.Serial Poll Enable (SPE)

5.Talk address of the device

6.Secondary address of the device, if applicable

7.Read serial poll response byte from device

8.Serial Poll Disable (SPD)

9.Other command bytes may be sent as necessary

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-64 © National Instruments Corp.

IBRSP (continued) IBRSP

The response byte spr , except the RQS bit, is device specific. For
example, the polled device might set a particular bit in the response byte to
indicate that it has data to transfer and another bit to indicate a need for
reprogramming. Consult the device documentation for interpretation of the
response byte.

Refer to IBCMD and IBRD for additional information.

Device Function Example:

Obtain the Serial Poll Response (spr) byte from the device tape .

DECLARE integer spr
CALL ibrsp (tape, spr)
! The application program would then analyze the
! response in spr.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-65 NKR BASIC

IBRSV IBRSV

Purpose: Request service and/or set or change the serial poll status byte.

Format: CALL ibrsv (ud,v)

ud is an interface board. v is the status byte that the GPIB board provides
when serial polled by another device that is the GPIB CIC. If bit 6 (the hex
40 bit) is set, the GPIB board additionally requests service from the
Controller by asserting the GPIB SRQ line.

The ibrsv function is used to request service from the Controller using the
Service Request (SRQ) signal and to provide a system-dependent status
byte when the Controller serial polls the GPIB board.

When ibrsv is called and an error does not occur, the previous value of v
is stored in iberr .

Refer also to Table 1-2.

Board Function Examples:

1. Set the Serial Poll status byte to hex 41, which simultaneously requests
service from an external CIC.

DECLARE integer v, stb
LET stb = 1
LET v = 65 OR stb ! Assert SRQ
CALL ibrsv (brd0, v)

2. Change the status byte without requesting service.

DECLARE integer stb
LET stb = 35 ! New status byte

! value, hex 23.
CALL ibrsv (brd0, stb)

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-66 © National Instruments Corp.

IBSAD IBSAD

Purpose: Change or disable Secondary Address.

Format: CALL ibsad (ud,v)

ud is a device or an interface board. If v is a number between hex 60 and
hex 7E, that number becomes the secondary GPIB address of the device or
interface board. If v is hex 7F or zero (0), secondary addressing is disabled.
ibsad is needed only to alter the secondary address value from its
configuration setting.

The assignment made by this function remains in effect until ibsad is
called again, the ibonl or ibfind function is called, or the system is
restarted.

When ibsad is called and an error does not occur, the previous secondary
address is stored in iberr .

Device IBSAD Function

If ud is a device, the function enables or disables extended GPIB
addressing for the device. When secondary addressing is enabled, the
specified secondary GPIB address of that device is sent automatically in
subsequent device I/O functions.

Board IBSAD Function

If ud is an interface board, the ibsad function enables or disables
extended GPIB addressing and, when enabled, assigns the secondary
address of the GPIB board.

Refer also to IBPAD and IBONL .

Device Function Examples:

1. Change the secondary GPIB address of the device plotter from its
current value to hex 6A.

DECLARE integer v
LET v = 106
CALL ibsad (plotter, v)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-67 NKR BASIC

IBSAD (continued) IBSAD

2. Disable secondary addressing for the device dvm .

DECLARE integer v
LET v = 0 ! 0 or hex 7F can be used.
CALL ibsad (dvm, v)

Board Function Examples:

1. Change the secondary GPIB address of the interface board brd0 from
its current value to hex 6A.

DECLARE integer v
LET v = hex 6A
CALL ibsad (brd0, v)

2. Disable secondary addressing for the interface board brd0 .

LET v = 0 ! 0 or hex 7F can be used.
CALL ibsad (brd0, v)

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-68 © National Instruments Corp.

IBSIC IBSIC

Purpose: Send interface clear for 100 µsec.

Format: CALL ibsic (ud)

ud is an interface board. ibsic must be used at the beginning of a
program if board functions are used.

The ibsic function asserts the IFC signal for at least 100 µsec, provided
the GPIB board has System Controller capability. This action initializes the
GPIB, makes the interface board CIC and Active Controller with ATN
asserted, and is generally used when a bus fault condition is suspected.

The IFC signal resets only the GPIB interface functions of bus devices and
not the internal device functions. Device functions are reset with the
Device Clear (DCL) and Selected Device Clear (SDC) commands. To
determine the effect of these messages, consult the device documentation.

The ESAC error occurs if the GPIB board does not have System Controller
capability.

Refer also to IBRSC.

Board Function Example:

At the beginning of a program, initialize the GPIB and become CIC and
Active Controller.

CALL ibsic (brd0)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-69 NKR BASIC

IBSRE IBSRE

Purpose: Set or clear the Remote Enable line.

Format: CALL ibsre (ud,v)

ud is an interface board. If v is non-zero, the Remote Enable (REN) signal
is asserted. If v is zero (0), the signal is unasserted.

The ibsre function turns the REN signal on and off. REN is used by
devices to select between local and remote modes of operation. REN
enables the remote mode. A device does not actually enter remote mode
until it receives its listen address.

The ESAC error occurs if the GPIB board is not System Controller.

When ibsre is called and an error does not occur, the previous value of v
is stored in iberr .

Refer also to IBRSC and Table 1-2.

Board Function Examples:

1. Place the device at listen address hex 23 (ASCII #) in remote mode.

DECLARE integer v
LET v = 1 ! Any non-zero value will do.
CALL ibsre (brd0, v)
LET cmd$ = "#" ! LAD
CALL ibcmd (brd0, cmd$)

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-70 © National Instruments Corp.

IBSRE (continued) IBSRE

2. To exclude the local ability of the device to return to local mode, send
the Local Lockout (LLO or hex 11) command or include it in the
command string in Example 1.

LET cmd$ = chr$(17)
CALL ibcmd (brd0, cmd$)

or

LET cmd$ = "#" & chr$(17)
CALL ibcmd (brd0, cmd$)

3. Return all devices to local mode.

DECLARE integer v
LET v = 0 ! Set REN to false
CALL ibsre (brd0, v)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-71 NKR BASIC

IBSTOP IBSTOP

Purpose: Abort asynchronous operation.

Format: CALL ibstop (ud)

ud is a device or an interface board.

ibstop terminates any asynchronous read, write, or command operation
and then resynchronizes the application with the driver.

If there is an aysnchronous I/O operation in progress, the ERR bit in the
status word is set and an EABO error is returned.

Device IBSTOP Function

If ud is a device, ibstop attempts to terminate any unfinished
asynchronous I/O device function to that device.

Board IBSTOP Function

If ud is a board, ibstop attempts to terminate any unfinished
asynchronous I/O operation that had been started with that board.

Device Function Example:

Stop any asynchronous operations associated with the device rdr .

CALL ibstop (rdr)

Board Function Example:

Stop any asynchronous operations associated with the interface board
brd0 .

CALL ibstop (brd0)

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-72 © National Instruments Corp.

IBTMO IBTMO

Purpose: Change or disable time limit.

Format: CALL ibtmo (ud,v)

ud is a device or an interface board. v is a code specifying the time limit as
follows:

Table 3-5. Timeout Code Values

Value of v Minimum Timeout

0 disabled

1 10 µsec

2 30 µsec

3 100 µsec

4 300 µsec

5 1 msec

6 3 msec

7 10 msec

8 30 msec

9 100 msec

10 300 msec

11 1 sec

12 3 sec

13 10 sec

14 30 sec

15 100 sec

(continues)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-73 NKR BASIC

IBTMO (continued) IBTMO

Table 3-5. Timeout Code Values (continued)

Value of v Minimum Timeout

16 300 sec

17 1000 sec

Note: If v is zero, no limit is in effect.

ibtmo is needed only to alter the value from its configuration setting.

The assignment made by this function remains in effect until ibtmo is
called again, the ibonl or ibfind function is called, or the system is
restarted.

The ibtmo function changes the length of time that the following functions
wait for the embedded I/O operation to finish or for the specified event to
occur before returning with a timeout indication:

• ibcmd

• ibrd

• ibrdi

• ibwrt

• ibwrti

The ibtmo function also changes the length of time that device functions
wait for commands to be accepted. If a device does not accept commands
within the time limit, the EBUS error will be returned.

When ibtmo is called and an error does not occur, the previous timeout
code value is stored in iberr .

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-74 © National Instruments Corp.

IBTMO (continued) IBTMO

Device IBTMO Function

If ud is a device, the new time limit is used in subsequent device functions
directed to that device.

Board IBTMO Function

If ud is a board, the new time limit is used in subsequent board functions
directed to that board.

Refer also to IBWAIT and Table 1-2.

Device Function Example:

Change the time limit for calls involving the device tape to
approximately 300 msec.

DECLARE integer v, tape
LET tape$ = "DEV9"
CALL ibfind (tape$, tape)
LET v = 10
CALL ibtmo (tape, v)

Board Function Example:

Change the time limit for calls directed to the interface board brd0 to
approximately 10 msec.

DECLARE integer v
LET v = 7
CALL ibtmo (brd0, v)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-75 NKR BASIC

IBTRAP IBTRAP

Purpose: Alter Applications Monitor trap and display modes.

Format: CALL ibtrap (mask,mode)

mask is a bit mask with the same bit assignments as ibsta . Each mask
bit is set to be trapped and/or recorded (depending on the value of mode)
when the corresponding bit appears in the status word after a GPIB call. If
all the bits are set, then every GPIB call except ibfind is trapped.

mode determines whether the recording and trapping occur. The valid
mode values are listed in Table 3-6.

Table 3-6. IBTRAP Mode

Value Effect

1 Turn monitor off. No recording or trapping occurs.

2 Turn record on. All calls are recorded but no trapping
occurs.

3 Turn record and trap on. All calls are recorded and the
monitor is displayed whenever a trap condition occurs.

If an error occurs during this call, the ERR bit of ibsta is set and iberr
is one of the values listed in Table 3-7. Otherwise, iberr contains the
previous mask value.

Table 3-7. IBTRAP Errors

Value Explanation

1 Applications Monitor not installed.

2 Invalid monitor mode.

3 ibtrap not supported by installed driver.

Refer to Appendix B, Applications Monitor , for more information.

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-76 © National Instruments Corp.

IBTRAP (continued) IBTRAP

Device Function Example:

Configure applications monitor to record and trap on SRQI or CMPL.

DECLARE integer mask, mode
LET mask = 4352 ! SRQI or CMPL (hex 1100)
LET mode = 3 ! Record and trap on
CALL ibtrap (mask, mode)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-77 NKR BASIC

IBTRG IBTRG

Purpose: Trigger selected device.

Format: CALL ibtrg (ud)

ud is a device.

ibtrg addresses and triggers the specified device.

ibtrg sends the following commands:

• Talk address of access board

• Secondary address of access board, if applicable

• Unlisten

• Listen address of the device

• Secondary address of the device, if applicable

• Group Execute Trigger (GET)

Other command bytes may be sent as necessary.

Refer to IBCMD for additional information.

Device Function Example:

Trigger the device analyz .

CALL ibtrg (analyz)

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-78 © National Instruments Corp.

IBWAIT IBWAIT

Purpose: Wait for selected event.

Format: CALL ibwait (ud,mask)

ud is a device or an interface board. mask is a bit mask with the same bit
assignments as the status word, ibsta . ibwait is used to monitor the
events selected by the bits in mask and to delay processing until any of
them occurs. These events and bit assignments are shown in
Table 3-8.

Table 3-8. Wait Mask Layout

Mnemonic
Bit
Pos.

Hex
Value Description

ERR 15 8000 GPIB error

TIMO 14 4000 Time limit exceeded

END 13 2000 GPIB board detected END or EOS

SRQI 12 1000 SRQ on

RQS 11 800 Device requesting service

CMPL 8 100 I/O completed

LOK 7 80 GPIB board is in Lockout State

REM 6 40 GPIB board is in Remote State

CIC 5 20 GPIB board is CIC

ATN 4 10 Attention is asserted

TACS 3 8 GPIB board is Talker

LACS 2 4 GPIB board is Listener

DTAS 1 2 GPIB board is in Device Trigger
State

DCAS 0 1 GPIB board is in Device Clear State

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-79 NKR BASIC

IBWAIT (continued) IBWAIT

ibwait also updates ibsta . If mask = 0 or mask = hex 8000 (the ERR
bit), the function returns immediately.

If the TIMO bit is zero (0) or the time limit is set to zero (0) with the
ibtmo function, timeouts are disabled. Disabling timeouts should be done
only when setting mask = 0 or when it is certain the selected event will
occur; otherwise, the processor may wait indefinitely for the event to occur.

Device IBWAIT Function

If ud is a device, only the ERR, TIMO, END, RQS, and CMPL bits of the
wait mask and status word are applicable. If automatic polling is enabled,
on an ibwait for RQS, each time the GPIB SRQ line is asserted, the
access board of the specified device serial polls all devices on its GPIB and
saves the responses, until the status byte returned by the device being
waited for indicates that it was the device requesting service (bit hex 40 is
set in the status byte). If the TIMO bit is set, ibwait returns if the event
does not occur within the timeout period of the device.

Board IBWAIT Function

If ud is a board, all bits of the wait mask and status word are applicable
except RQS.

Device Function Example:

Wait indefinitely for the device logger to request service.

DECLARE integer mask
LET mask = 2048 ! RQS (hex 800)
CALL ibwait (logger, mask)

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-80 © National Instruments Corp.

IBWAIT (continued) IBWAIT

Board Function Examples:

1. Wait for a service request or a timeout.

DECLARE integer mask
LET mask = 20480 ! TIMO SRQI (hex 5000)
CALL ibwait (ud, mask)
! Check ibsta here to see which occurred.

2. Update the current status for ibsta .

DECLARE integer mask
LET mask = 0
CALL ibwait (ud, mask)

3. Wait indefinitely until control is passed from another CIC.

DECLARE integer mask
LET mask = 32 ! CIC (hex 20)
CALL ibwait (ud, mask)

4. Wait indefinitely until addressed to talk or listen by another CIC.

DECLARE integer mask
LET mask = 12 ! TACS LACS (hex 0C)
CALL ibwait (ud, mask)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-81 NKR BASIC

IBWRT IBWRT

Purpose: Write data from string.

Format: CALL ibwrt (ud,wrt$)

ud is a device or an interface board. wrt contains the data to be sent over
the GPIB.

The ibwrt function terminates on any of the following events:

• All bytes are transferred.

• An error is detected.

• The time limit is exceeded.

• A Device Clear (DCL) or Selected Device Clear (SDC) command is
received from another device which is the CIC.

ibcnt is the 16-bit representation of the number of bytes read. A short
count can occur on any of the above terminating events but the first.

When the device ibwrt function returns, ibsta holds the latest device
status, ibcnt is the 16-bit representation of the number of data bytes
written, and, if the ERR bit in ibsta is set, iberr is the first error
detected.

Device IBWRT Function

If ud is a device, the device is addressed to listen and the access board is
addressed to talk.

Then the data is written to the device.

Board IBWRT Function

If ud is an interface board, the ibwrt function attempts to write to a GPIB
device that is assumed to be already addressed by the CIC.

If the access board is CIC, ibcmd must be called prior to ibwrt to address
the device to listen and the board to talk.

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-82 © National Instruments Corp.

IBWRT (continued) IBWRT

If the access board is Active Controller, the board is first placed in Standby
Controller state with ATN off even after the write operation completes. If
the access board is not the Active Controller, ibwrt commences
immediately.

An EADR error results if the board is CIC but has not been addressed to
talk with ibcmd . An EABO error results if, for any reason, ibwrt does
not complete within the time limit. An ENOL error occurs if there are no
Listeners on the bus when the data bytes are sent.

Note: If you want to send an EOS character at the end of your data string,
you must place it there explicitly. See Device Example 2 .

Device Function Examples:

1. Write ten instruction bytes to the device dvm .

LET wrt$ = "F3R1X5P2G0"
CALL ibwrt (dvm, wrt$)

2. Write five instruction bytes terminated by a carriage return and a
linefeed to the device ptr . Linefeed is the EOS character of the
device.

LET wrt$ = "IP2X5" & chr$(13) & chr$(10)
CALL ibwrt (ptr, wrt$)

Board Function Example:

Write ten instruction bytes to a device at listen address hex 2F
(ASCII /) and then unaddress it (the GPIB board talk address is hex 40
or ASCII @).

! Perform addressing.
LET cmd$ = "?@/" ! UNL MTA LAD
CALL ibcmd (brd0, cmd$)
! Perform board write.
LET wrt$ = "F3R1X5P2G0"
CALL ibwrt (brd0, wrt$)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-83 NKR BASIC

IBWRTA IBWRTA

Purpose: Write data asynchronously from string.

Format: CALL ibwrta (ud,wrt$)

ud is a device or an interface board. wrt contains the data to be sent over
the GPIB.

ibwrta is used in place of ibwrt when the application program must
perform other functions while processing the GPIB I/O operation.
ibwrta returns immediately after starting the I/O operation.

The three asynchronous I/O calls (ibcmda , ibrda , and ibwrta) are
designed to allow an application to perform other functions (non-GPIB
functions) while processing the I/O. Once the asynchronous I/O call has
been initiated, further GPIB calls involving the device or access board are
not allowed until the I/O has completed and the GPIB driver and the
application have been resynchronized.

Resynchronization can be accomplished by using one of the following three
functions:

Note: Resynchronization is only successful if the ibsta returned contains
CMPL.

• ibwait (mask
contains CMPL) - The driver and application are synchronized.

• ibstop - The asynchronous I/O is canceled, and the driver
and application are synchronized.

• ibonl - The asynchronous I/O is canceled, the interface
has been reset, and the driver and application are
synchronized.

The only other GPIB call that is allowed during asynchronous I/O is the
ibwait function (mask is arbitrary). Any other GPIB call involving the
device or access board returns the EOIP error.

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-84 © National Instruments Corp.

IBWRTA (continued) IBWRTA

Device IBWRTA Function

If ud is a device, the device is addressed to listen and the access board is
addressed to talk. Then the data is written to the device.

Board IBWRTA Function

If ud is an interface board, the ibwrta function attempts to write to a
GPIB device that is assumed to be already properly initialized and
addressed by the actual CIC.

If the board is CIC, the ibcmd function must be called prior to ibwrta to
address the device to listen and the board to talk.

If the board is Active Controller, the board is first placed in Standby
Controller state with ATN off (even after the write operation completes).
Otherwise, the write operation commences immediately.

An EADR error results if the board is CIC but has not been addressed to
talk with the ibcmd function. The ENOL error does not occur if there are
no Listeners.

Note: If you want to send an EOS character at the end of your data string,
you must place it there explicitly.

When the device ibwrt function returns, ibsta holds the latest device
status, and, if the ERR bit in ibsta is set, iberr is the first error detected.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-85 NKR BASIC

IBWRTA (continued) IBWRTA

Device Function Example:

Write ten instruction bytes to the device dvm while performing other
processing.

DECLARE integer mask
LET wrt$ = "F3R1X5P2G0"
CALL ibwrta (dvm, wrt$)
LET mask = 16640 ! TIMO CMPL
! Perform other processing here then wait for I/O
! completion or a timeout.
CALL ibwait (dvm, mask)
! Check ibsta to see what the write terminated: on
! CMPL, END, TIMO, or ERR

Board Function Example:

Write ten instruction bytes to a device at listen address hex 2F
(ASCII /), while testing for a high priority event to occur, and then
unaddress it (the GPIB board talk address is hex 40 or ASCII @).

! Perform addressing in preparation for board write.
LET cmd$ = "?@/" ! UNL MTA LAD
CALL ibcmd (brd0, cmd$)
! Perform board asynchronous write.
LET wrt$ = "F3R1X5P2G0"
CALL ibwrta (brd0, wrt$)
! Perform other processing here then wait for I/O
! completion or a timeout.
LET mask = 16640 ! TIMO CMPL
CALL ibwait (brd0, mask)

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-86 © National Instruments Corp.

IBWRTF IBWRTF

Purpose: Write data from file.

Format: CALL ibwrtf (ud,flname$)

ud is a device or an interface board. flname is the file name from which
the data is written to the GPIB. flname can be up to 50 characters long,
including a drive and path designation.

ibwrtf automatically opens the file. On exit, ibwrtf closes the file.

An EFSO error results if it is not possible to open, seek, read, or close the
specified file.

The ibwrtf function operation terminates on any of the following events:

• All bytes are sent.

• An error is detected.

• The time limit is exceeded.

• A Device Clear (DCL) or Selected Device Clear (SDC) command is
received from another device that is the CIC.

ibcnt is the 16-bit representation of the number of bytes written.

When the ibwrtf function returns, ibsta holds the latest device status,
ibcnt is the 16-bit representation of the number of bytes written, and, if
the ERR bit in ibsta is set, iberr is the first error detected.

Board IBWRTF Function

If ud is an interface board, the board ibwrt function writes to a GPIB
device that is assumed to be already properly addressed.

An EADR error results if the board is CIC but has not been addressed to
talk with the ibcmd function. An EABO error results if, for any reason,
the read operation does not complete within the time limit. An ENOL error
occurs if there are no Listeners on the bus when the data bytes are sent.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-87 NKR BASIC

IBWRTF (continued) IBWRTF

Device Function Example:

Write data to the device rdr from the file Y.DAT on the current disk
drive.

LET flname$ = "Y.DAT"
CALL ibwrtf (rdr, flname$)

Board Function Example:

1. Write data to the device at listen address hex 2C (ASCII ,) from the file
Y.DAT on the current drive, and then unaddress the interface board
brd0 .

! Perform addressing in preparation for board write.
LET cmd$ = "?@," ! UNL MTA LAD
CALL ibcmd (brd0, cmd$)
! Perform board write.
LET flname$ = "Y.DAT"
CALL ibwrtf (brd0, flname$)
! Unaddress the Talker and Listener.
LET cmd$ = "_?" ! UNT UNL
CALL ibcmd (brd0, cmd$)

2. To enable automatic byte swapping of binary integer data, see the
IBCONFIG Board Function Example.

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-88 © National Instruments Corp.

IBWRTI IBWRTI

Purpose: Write data from integer array.

Format: CALL ibwrti (ud,iarr(1),cnt)

ud is a device or an interface board. iarr is an integer array from which
data is written to the GPIB. cnt specifies the maximum number of bytes to
be written.

Write cnt bytes of data from iarr to the GPIB. The data, stored as
2-byte integers in iarr , is sent in low-byte, high-byte order to the GPIB.

ibwrti is similar to the ibwrt function, which writes data from a
character string variable.

Refer to IBWRT and tothe section titled NKR BASIC NI-488 I/O Calls in
Chapter 1, General Information . Refer also to IBWRTIA .

Device Function Examples:

1. Write ten instruction bytes from the integer array wrt to the device
dvm .

DECLARE integer wrt(5), cnt
LET wrt(1) = ORD("F") + ORD("3") * 256
LET wrt(2) = ORD("R") + ORD("1") * 256
LET wrt(3) = ORD("X") + ORD("5") * 256
LET wrt(4) = ORD("P") + ORD("2") * 256
LET wrt(5) = ORD("G") + ORD("0") * 256
LET cnt = 10
CALL ibwrti (dvm, wrt(1), cnt)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-89 NKR BASIC

IBWRTI (continued) IBWRTI

2. Write five instruction bytes from integer array wrt terminated by a
carriage return and a linefeed to device ptr . Linefeed is the EOS
character of the device.

DECLARE integer wrt(4), cnt
LET wrt(1) = ORD("I") + ORD("P") * 256
LET wrt(2) = ORD("2") + ORD("X") * 256
LET wrt(3) = ORD("5") + 13 * 256
LET wrt(4) = 10
LET cnt = 7
CALL ibwrti (ptr, wrt(1), cnt)

Board Function Example:

1. Write ten instruction bytes from the integer array wrt to a device at
listen address hex 2F (ASCII /) and then unaddress it. (The GPIB
board talk address is hex 40 or ASCII @.)

DECLARE integer wrt(5), cnt
! Perform addressing.
cmd$ = "?@/" ! UNL MTA LAD
CALL ibcmd (brd0, cmd$)
! Perform board write.
LET wrt(1) = ORD("F") + ORD("3") * 256
LET wrt(2) = ORD("R") + ORD("1") * 256
LET wrt(3) = ORD("X") + ORD("5") * 256
LET wrt(4) = ORD("P") + ORD("2") * 256
LET wrt(5) = ORD("G") + ORD("0") * 256
LET cnt = 10
CALL ibwrti (brd0, wrt(1), cnt)

2. To enable automatic byte swapping of binary integer data, see the
IBCONFIG Board Function Example.

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-90 © National Instruments Corp.

IBWRTIA IBWRTIA

Purpose: Write data asynchronously from integer array.

Format: CALL ibwrtia (ud, iarr(1), cnt)

ud is a device or an interface board. iarr is an array from which integer
data is written. cnt is the maximum number of bytes to be written.

ibwrtia writes asynchronously cnt bytes of integer data from iarr to
the GPIB. The integer data is sent in low-byte, high-byte order to the GPIB.

ibwrtia is similar to the ibwrta function, which writes data from a
character variable.

Refer to IBWRTA in this chapter and to NKR BASIC NI-488 I/O Calls in
Chapter 1.

Device Function Example:

Write ten instruction bytes from integer array wrt to the device dvm
while performing other processing.

DECLARE integer wrt(5), cnt
LET wrt(1) = ORD("F") + ORD("3") * 256
LET wrt(2) = ORD("R") + ORD("1") * 256
LET wrt(3) = ORD("X") + ORD("5") * 256
LET wrt(4) = ORD("P") + ORD("2") * 256
LET wrt(5) = ORD("G") + ORD("0") * 256
LET cnt = 10
CALL ibwrtia (dvm, wrt(1), cnt)
LET mask = 16640 ! TIMO CMPL
! Perform other processing here then wait for I/O
! completion or a timeout.
CALL ibwait (dvm, mask)
! ibsta shows how the write terminated: on
! CMPL, END, TIMO, or ERR.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-91 NKR BASIC

IBWRTIA (continued) IBWRTIA

Board Function Example:

Write ten instruction bytes from the integer array WRT to a device at
listen address hex 2F (ASCII /). (The GPIB board talk address is hex
40 or ASCII @.)

DECLARE integer wrt(5), cnt
! Perform addressing.
LET cmd$ = "?@/" ! UNL MTA LAD
CALL ibcmd (brd0, cmd$)
! Perform board write.
LET wrt(1) = ORD("F") + ORD("3") * 256
LET wrt(2) = ORD("R") + ORD("1") * 256
LET wrt(3) = ORD("X") + ORD("5") * 256
LET wrt(4) = ORD("P") + ORD("2") * 256
LET wrt(5) = ORD("G") + ORD("0") * 256
LET cnt = 10
CALL ibwrtia (brd0, wrt(1), cnt)
! Perform other processing here then wait for I/O
! completion or a timeout.
LET mask = 16640 ! TIMO CMPL
CALL ibwait (brd0, mask)

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-92 © National Instruments Corp.

GPIB Programming Examples

These examples illustrate the programming steps that could be used to
program a representative IEEE 488 instrument from your personal computer
using the NI-488 functions. The applications are written in NKR BASIC.
The target instrument is a digital voltmeter (DVM). This instrument is
otherwise unspecified (that is, it is not a DVM manufactured by any
particular manufacturer). The purpose here is to explain how to use the
driver to execute certain programming and control sequences and not how
to determine those sequences.

Because the instructions that are sent to program a device as well as the data
that might be returned from the device are called device-dependent
messages , the format and syntax of the messages used in this example are
unique to this device. Furthermore, the interface messages or bus
commands that must be sent to each device will also vary, but to a lesser
degree. The exact sequence of messages to program and to control a
particular device are contained in its documentation.

For example, the following sequence of actions is assumed to be necessary
to program this DVM to make and return measurements of a high frequency
AC voltage signal in the autoranging mode:

1. Initialize the GPIB interface circuits of the DVM so that it can respond
to messages.

2. Place the DVM in remote programming mode and turn off front panel
control.

3. Initialize the internal measurement circuits.

4. Instruct the meter to measure volts alternating current (VAC) using
auto-ranging (AUTO), to wait for a trigger from the Controller before
starting a measurement (TRIGGER 2), and to assert the IEEE 488
Service Request signal line, SRQ, when the measurement has been
completed and the meter is ready to send the result (*SRE 16).

5. For each measurement:

a. Send the TRIGGER command to the multimeter. The ibwrt
command "VAL1?" instructs the meter to send the next triggered
reading to its IEEE 488 output buffer.

b. Wait until the DVM asserts Service Request (SRQ) to indicate that
the measurement is ready to be read.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-93 NKR BASIC

c. Serial poll the DVM to determine if the measured data is valid or if
a fault condition exists. You can find out by checking the message
available (MAV) bit, bit 4 in the status byte.

d. If the data is valid, read 10 bytes from the DVM.

6. End the session.

The example programs that follow are based on these assumptions:

• The GPIB board is the designated System Active Controller of the
GPIB.

• There is no change to the GPIB board default hardware settings.

• The only changes made to the software parameters are those necessary
to define the device DVM at primary address 1.

• There is only one GPIB board in use, and it is designated GPIB0.

• The primary listen and talk addresses of GPIB0 are hex 20 (ASCII
<space>) and hex 40 (ASCII @), respectively.

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-94 © National Instruments Corp.

NKR BASIC Example Program – Device Functions

! NKR BASIC Example Program - Device Functions

 DECLARE integer ibsta, iberr, ibcnt ! GPIB status
! variables.

 DECLARE integer dvm ! Device number.
 DECLARE integer mask ! Wait mask.
 DECLARE integer spr ! Serial poll
 ! response.
 DECLARE integer v ! GPIB function

! parameter.
 DECLARE integer m ! FOR loop index.

! gpiberr is an error routine that is called when an NI-488
! function fails. dvmerr is an error routine that is
! called when the Fluke 45 does not have valid data to send.

 DECLARE sub gpiberr
 DECLARE sub dvmerr

 CALL cls_1
 PRINT "Read ten measurements from the Fluke 45..."
 PRINT

! Assign a unique identifier to the Fluke 45 and store it in
! the variable dvm. The name "DVM" is the name you
! configured for the Fluke 45 using IBCONF.EXE. If dvm is
! less than zero, call gpiberr with an error message.

 LET devname$ = "DVM"
 CALL ibfind (devname$,dvm)
 IF dvm < 0 then
 LET msg$ = "Ibfind Error"
 CALL gpiberr
 STOP
 END IF

! Clear the internal or device functions of the Fluke 45.
! If the error bit (ERR) is set in ibsta, call gpiberr with
! an error message.

 CALL ibclr (dvm)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Ibclr Error"
 CALL gpiberr
 STOP
 END IF

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-95 NKR BASIC

! Reset the Fluke 45 by issuing the reset (*RST) command.
! Instruct the Fluke 45 to measure the volts alternating
! current (VAC) using auto-ranging (AUTO), to wait for a
! trigger from the GPIB interface board (TRIGGER 2),
! and to assert the IEEE 488 Service Request line
! (SRQ) when the measurement has been completed and the
! Fluke 45 is ready to send the result (*SRE 16). If
! the error bit (ERR) is set in ibsta, call gpiberr
! with an error message.

 LET wrt$ = "*RST; VAC; AUTO; TRIGGER 2; *SRE 16"
 CALL ibwrt (dvm,wrt$)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Ibwrt Error"
 CALL gpiberr
 STOP
 END IF

! Initialize the accumulator of the ten measurements to zero.

 LET sum = 0.0

! Establish a FOR loop to read the ten measurements. The
! variable m serves as the counter of the FOR loop.

 FOR m = 1 to 10

 ! Trigger the Fluke 45. If the error bit (ERR) is set
 ! in ibsta, call gpiberr with an error message.

 CALL ibtrg (dvm)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Ibtrg Error"
 CALL gpiberr
 STOP
 END IF

 ! Request the triggered measurement by sending the
 ! instruction "VAL1?". If the error bit (ERR) is set
 ! in ibsta, call gpiberr with an error message.

 LET wrt$ = "VAL1?"
 call ibwrt(dvm, wrt$)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Ibwrt Error"
 CALL gpiberr
 STOP
 END IF

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-96 © National Instruments Corp.

 ! Wait for the Fluke 45 to request service (RQS) or wait
 ! for the Fluke 45 to timeout (TIMO). The default
 ! timeout period is 10 seconds. RQS is detected by bit
 ! position 11 (hex 800). TIMO is detected by bit
 ! position 14 (hex 4000). These status bits are listed
 ! under the NI-488 function ibwait in the Software
 ! Reference Manual. If the error bit (ERR) or the
 ! timeout bit (TIMO) is set in ibsta, call gpiberr with
 ! an error message.

 LET mask = 18432 ! RQS or TIMO
 call ibwait (dvm,mask)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-16384) <> 0 then
 LET msg$ = "Ibwait Error"
 CALL gpiberr
 STOP
 END IF

 ! Read the Fluke 45 serial poll status byte. If the
 ! error bit (ERR) is set in ibsta, call gpiberr with an
 ! error message.

 call ibrsp (dvm,spr)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Ibrsp Error"
 CALL gpiberr
 STOP
 END IF

 ! If the returned status byte is hex 50, the Fluke 45
has
 ! valid data to send; otherwise,it has a fault condition
 ! to report. If the status byte is not hex 50, call
 ! dvmerr with an error message.

 IF spr <> 80 then
 LET msg$ = "Fluke 45 Error"
 CALL dvmerr
 STOP
 END IF

 ! Read the Fluke 45 measurement. If the error bit (ERR)
 ! is set in ibsta, call gpiberr with an error message.

 LET rd$ = repeat$(" ",10)
 CALL ibrd (dvm,rd$)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Ibrd Error"
 CALL gpiberr
 STOP
 END IF

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-97 NKR BASIC

 ! Print the measurement received from the Fluke 45.

 LET rd$ = Rd$(1:ibcnt-1)
 PRINT "Reading: "; Rd$
 PRINT

 ! Convert the variable rd to its numeric value and add
 ! to the accumulator.

 LET sum = sum + val(Rd$)

 NEXT m ! Continue the FOR loop until 10
 ! measurements are read.

! Print the average of the ten readings.

 PRINT "The average of the 10 readings is ", sum/10

! Call the ibonl function to disable the hardware
! and software.

 LET v = 0
 CALL ibonl(dvm, v)

!
==
! Procedure gpiberr
! The gpiberr procedure notifies you that a NI-488 function
! failed by printing an error message. The status variable
! ibsta prints in hexadecimal along with the mnemonic meaning
! of the bit position. The status variable iberr prints
! in decimal along with the mnemonic meaning of the decimal
! value. The status variable ibcnt prints in decimal.
!
! The NI-488 function ibonl is called to disable the hardware
! and software.
!
==
SUB gpiberr
 PRINT msg$

 PRINT "ibsta = &H"; hex$(ibsta_i)

 IF b_AND(ibsta_i, -32768) <> 0 then PRINT " ERR"
 IF b_AND(ibsta_i, 16384) <> 0 then PRINT " TIMO"
 IF b_AND(ibsta_i, 8192) <> 0 then PRINT " END"
 IF b_AND(ibsta_i, 4096) <> 0 then PRINT " SRQI"
 IF b_AND(ibsta_i, 2048) <> 0 then PRINT " RQS"
 IF b_AND(ibsta_i, 256) <> 0 then PRINT " CMPL"
 IF b_AND(ibsta_i, 128) <> 0 then PRINT " LOK"
 IF b_AND(ibsta_i, 64) <> 0 then PRINT " REM"
 IF b_AND(ibsta_i, 32) <> 0 then PRINT " CIC"
 IF b_AND(ibsta_i, 16) <> 0 then PRINT " ATN"
 IF b_AND(ibsta_i, 8) <> 0 then PRINT " TACS"
 IF b_AND(ibsta_i, 4) <> 0 then PRINT " LACS"
 IF b_AND(ibsta_i, 2) <> 0 then PRINT " DTAS"

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-98 © National Instruments Corp.

 IF b_AND(ibsta_i, 1) <> 0 then PRINT " DCAS"
 PRINT

 PRINT "iberr = ", iberr
 IF iberr = 0 then PRINT " EDVR <DOS Error>"
 IF iberr = 1 then PRINT " ECIC <Not CIC>"
 IF iberr = 2 then PRINT " ENOL <No Listener>"
 IF iberr = 3 then PRINT " EADR <Address error>"
 IF iberr = 4 then PRINT " EARG <Invalid argument>"
 IF iberr = 5 then PRINT " ESAC <Not Sys Ctrlr>"
 IF iberr = 6 then PRINT " EABO <Op. aborted>"
 IF iberr = 7 then PRINT " ENEB <No GPIB board>"
 IF iberr = 10 then PRINT " EOIP <Async I/O in prg>"
 IF iberr = 11 then PRINT " ECAP <No capability>"
 IF iberr = 12 then PRINT " EFSO <File sys. error>"
 IF iberr = 14 then PRINT " EBUS <Command error>"
 IF iberr = 15 then PRINT " ESTB <Status byte lost>"
 IF iberr = 16 then PRINT " ESRQ <SRQ stuck on>"
 IF iberr = 20 then PRINT " ETAB <Table Overflow>"
 PRINT

 PRINT "ibcnt = ", ibcnt

! Call the ibonl function to disable the hardware and
! software.

 LET v = 0
 CALL ibonl(dvm, v)

END SUB

!
==
! Procedure dvmerr
! The dvmerr procedure notifies you that the Fluke 45 returned
! an invalid serial poll response byte. The error message
! prints along with the serial poll response byte.
!
! The NI-488 function ibonl is called to disable the hardware
! and software.
!
==
SUB dvmerr

 PRINT msg$
 LET spr_i = spr
 PRINT "Returned Byte = &H"; hex$(spr_i)

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-99 NKR BASIC

! Call the ibonl function to disable the hardware.

 LET v = 0
 CALL ibonl (dvm, v)

END SUB

END

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-100 © National Instruments Corp.

NKR BASIC Example Program – Board Functions

! NKR BASIC Example Program - Board Functions

 DECLARE integer ibsta, iberr, ibcnt ! GPIB status
! variables.

 DECLARE integer brd0 ! Board number.
 DECLARE integer mask ! Wait mask.
 DECLARE integer v ! GPIB function

! parameter.
 DECLARE integer m ! FOR loop index.

! gpiberr is an error routine that is called when an NI-488
! function fails. dvmerr is an error routine that is
! called when the Fluke 45 does not have valid data the send.

 DECLARE sub gpiberr
 DECLARE sub dvmerr

 CALL cls_1
 PRINT "Read ten measurements from the Fluke 45..."
 PRINT

! Assign a unique identifier to board 0 and store it in the
! variable BRD0. The name 'GPIB0' is the default name of
! board 0. If BRD0 is less than zero, call gpiberr with
! an error message.

 LET bdname$ = "GPIB0"
 CALL ibfind(bdname$, brd0)
 IF brd0 < 0 then
 LET msg$ = "Ibfind Error"
 CALL gpiberr
 STOP
 END IF

! Send the Interface Clear (IFC) message. This action
! initializes the GPIB interface board and makes the
! interface board Controller-In-Charge. If the error bit
! (ERR) is set in ibsta, call gpiberr with an error message.

 CALL ibsic(brd0)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Ibsic Error"
 CALL gpiberr
 STOP
 END IF

! Turn on the Remote Enable (REN) signal. The device does
! not actually enter remote mode until it receives its
! listen address. If the error bit (ERR) is set in ibsta,
! call gpiberr with an error message.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-101 NKR BASIC

 LET v = 1
 CALL ibsre(brd0, v)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Ibsre Error"
 CALL gpiberr
 STOP
 END IF

! Inhibit front panel control with the Local Lockout (LLO)
! command (hex 11). Place the Fluke 45 in remote mode
! by addressing it to listen (hex 21 or ASCII "!").
! Send the Device Clear (DCL) message to clear internal
! device functions (hex 14). Address the GPIB interface
! board to talk (hex 40 or ASCII "@"). These commands
! can be found in Appendix A of the Software Reference
! Manual. If the error bit (ERR) is set in ibsta, call
! gpiberr with an error message.

 LET cmd$ = chr$(17) & "!" & chr$(20) & "@"
 CALL ibcmd(brd0, cmd$)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Ibcmd Error"
 CALL gpiberr
 STOP
 END IF

! Reset the Fluke 45 by issuing the reset (*RST) command.
! Instruct the Fluke 45 to measure the volts alternating
! current (VAC) using auto-ranging (AUTO), to wait for a
! trigger from the GPIB interface board (TRIGGER 2),
! and to assert the IEEE 488 Service Request line (SRQ)
! when the measurement has been completed and the Fluke 45
! is ready to send the result (*SRE 16). If the error
! bit (ERR) is set in ibsta, call gpiberr with an error
! message.

 LET wrt$ = "*RST; VAC; AUTO; TRIGGER 2; *SRE 16"
 CALL ibwrt(brd0, wrt$)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Ibwrt Error"
 CALL gpiberr
 STOP
 END IF

! Initialize the accumulator of the ten measurements
! to zero.

 LET sum = 0.0

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-102 © National Instruments Corp.

! Establish a FOR loop to read the ten measurements. The
! variable m serves as the counter of the FOR loop.

 FOR m = 1 to 10

 ! Address the Fluke 45 to listen (hex 21 or ASCII "!")
 ! and address the GPIB interface board to talk
 ! (hex 48 or ASCII "@"). These commands can be found
 ! in Appendix A of the Software Reference Manual. If
 ! the error bit (ERR) is set in ibsta, call gpiberr with
 ! an error message.

 LET cmd$ = "!" & "@"
 CALL ibcmd(brd0, cmd$)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Ibcmd Error"
 CALL gpiberr
 STOP
 END IF

 ! Trigger the Fluke by sending the trigger (GET) command
 ! (hex 08) message. If the error bit (ERR) is set in
 ! ibsta, call gpiberr with an error message.

 LET cmd$ = chr$(8)
 CALL ibcmd(brd0, cmd$)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Ibcmd Error"
 CALL gpiberr
 STOP
 END IF

 ! Request the triggered measurement by sending the
 ! instruction "VAL1?". If the error bit (ERR) is set
 ! ibsta, call gpiberr with an error message.

 LET wrt$ = "VAL1?"
 CALL ibwrt(brd0, wrt$)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Ibwrt Error"
 CALL gpiberr
 STOP
 END IF

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-103 NKR BASIC

 ! Wait for the Fluke 45 to assert the Service Request
 ! (SRQ) line or wait for the Fluke 45 to timeout(TIMO).
 ! The default timeout period is 10 seconds. SRQ is
 ! detected by bit position 12 (hex 1000, SRQI). TIMO
 ! is detected by bit position 14 (hex 4000). These
 ! status bits are listed under the NI-488 function
 ! ibwait in the Software Reference Manual. If error
 ! bit (ERR) or the timeout bit (TIMO) is set in ibsta,
 ! call gpiberr with an error message.

 LET mask = 20480 ! SRQI or TIMO
 CALL ibwait(brd0, mask)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-16384) <> 0 then
 LET msg$ = "Ibwait Error"
 CALL gpiberr
 STOP
 END IF

 ! Serial poll the Fluke 45. Unaddress bus devices by
 ! sending the untalk (UNT) command (hex 5F or ASCII "_")
 ! and the unlisten (UNL) command (hex 3F or ASCII "?").
 ! Send the Serial Poll Enable (SPE) command (hex 18) and
 ! the Fluke 45 talk address (hex 41 or ASCII "A").
 ! Address the GPIB interface board to listen (hex 20 or
 ! ASCII space). These commands can be found in
 ! Appendix A of the Software Reference Manual. If the
 ! error bit (ERR) is set in ibsta, call gpiberr with
 ! an error message.

 LET cmd$ = "_?" & chr$(24) & "A "
 CALL ibcmd(brd0, cmd$)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Ibcmd Error"
 CALL gpiberr
 STOP
 END IF

 ! Read the Fluke 45 serial poll status byte. If the
error
 ! bit (ERR) is set in ibsta, call gpiberr with an
 ! error message.

 LET rd$ = repeat$(" ",1)
 CALL ibrd(brd0, rd$)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Ibrd Error"
 CALL gpiberr
 STOP
 END IF

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-104 © National Instruments Corp.

 ! If the returned status byte is hex 50, the Fluke 45
 ! has valid data to send; otherwise, it has a fault
 ! condition to report. If the status byte is not
 ! hex 50, call dvmerr with an error message.

 IF ord(rd$) <> 80 then
 LET msg$ = "Fluke 45 Error"
 CALL dvmerr
 STOP
 END IF

 ! Complete the serial poll by sending the Serial Poll
 ! Disable (SPD) command, hex 19. This command can be
 ! found in Appendix A of the Software Reference
 ! Manual. If the error bit (ERR) is set in ibsta,
 ! call gpiberr with an error message.

 LET cmd$ = chr$(25)
 CALL ibcmd(brd0, cmd$)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Ibcmd Error"
 CALL gpiberr
 STOP
 END IF

 ! Read the Fluke 45 measurement. If the error bit (ERR)
 ! is set in ibsta, call gpiberr with an error message.

 LET rd$ = repeat$(" ",10)
 CALL ibrd(brd0, rd$)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "IBRD Error"
 CALL gpiberr
 STOP
 END IF

 ! Print the measurement received from the Fluke 45.

 LET rd$ = Rd$(1:ibcnt-1)
 PRINT "Reading: "; Rd$
 PRINT

 ! Convert the variable rd to its numeric value and add
 ! to the accumulator.

 LET sum = sum + val(Rd$)

 NEXT m ! Continue the FOR loop until 10 measurements
 ! are read.

Chapter 3 NI-488 Function Descriptions

© National Instruments Corp. 3-105 NKR BASIC

! Print the average of the ten readings.

 PRINT "The average of the 10 readings is ", sum/10

! Call the ibonl function to disable the hardware
! and software.

 LET v = 0
 CALL ibonl(brd0, v)

! ===
! Procedure gpiberr
! The gpiberr procedure notifies you that a NI-488 function
! failed by printing an error message. The status variable
! ibsta prints in hexadecimal along with the mnemonic meaning
! of the bit position.The status variable iberr prints in
! decimal along with the mnemonic meaning of the decimal
! value. The status variable ibcnt prints in decimal.
!
! The NI-488 function ibonl is called to disable the hardware
! and software.
! ===
SUB gpiberr

 PRINT msg$

 PRINT "ibsta = &H"; hex$(ibsta_i)

 IF b_AND(ibsta_i,-32768) <> 0 then PRINT " ERR"
 IF b_AND(ibsta_i,16384) <> 0 then PRINT " TIMO"
 IF b_AND(ibsta_i,8192) <> 0 then PRINT " END"
 IF b_AND(ibsta_i,4096) <> 0 then PRINT " SRQI"
 IF b_AND(ibsta_i,2048) <> 0 then PRINT " RQS"
 IF b_AND(ibsta_i,256) <> 0 then PRINT " CMPL"
 IF b_AND(ibsta_i,128) <> 0 then PRINT " LOK"
 IF b_AND(ibsta_i,64) <> 0 then PRINT " REM"
 IF b_AND(ibsta_i,32) <> 0 then PRINT " CIC"
 IF b_AND(ibsta_i,16) <> 0 then PRINT " ATN"
 IF b_AND(ibsta_i,8) <> 0 then PRINT " TACS"
 IF b_AND(ibsta_i,4) <> 0 then PRINT " LACS"
 IF b_AND(ibsta_i,2) <> 0 then PRINT " DTAS"
 IF b_AND(ibsta_i,1) <> 0 then PRINT " DCAS"
 PRINT

 PRINT "iberr = ", iberr
 IF iberr = 0 then PRINT " EDVR <DOS Error>"
 IF iberr = 1 then PRINT " ECIC <Not CIC>"
 IF iberr = 2 then PRINT " ENOL <No Listener>"
 IF iberr = 3 then PRINT " EADR <Address error>"
 IF iberr = 4 then PRINT " EARG <Invalid argument>"
 IF iberr = 5 then PRINT " ESAC <Not Sys Ctrlr>"
 IF iberr = 6 then PRINT " EABO <Op. aborted>"
 IF iberr = 7 then PRINT " ENEB <No GPIB board>"
 IF iberr = 10 then PRINT " EOIP <Async I/O in prg>"
 IF iberr = 11 then PRINT " ECAP <No capability>"

NI-488 Function Descriptions Chapter 3

NKR BASIC 3-106 © National Instruments Corp.

 IF iberr = 12 then PRINT " EFSO <File sys. error>"
 IF iberr = 14 then PRINT " EBUS <Command error>"
 IF iberr = 15 then PRINT " ESTB <Status byte lost>"
 IF iberr = 16 then PRINT " ESRQ <SRQ stuck on>"
 IF iberr = 20 then PRINT " ETAB <Table Overflow>"
 PRINT

 PRINT "ibcnt = ", ibcnt

! Call the ibonl function to disable the hardware and
! software.

 LET v = 0
 CALL ibonl(brd0, v)

END SUB

!
==
! Routine dvmerr
! The dvmerr routine notifies you that the Fluke 45 returned
! an invalid serial poll response byte. The error message
! prints along with the serial poll response byte.
!
! The NI-488 function ibonl is called to disable the hardware
! and software.
!
==
SUB dvmerr

 PRINT msg$

 PRINT "Status Byte = ", ord(rd$)

! Call the ibonl function to disable the hardware and
! software.

 LET v = 0
 CALL ibonl(brd0, v)

END SUB

END

© National Instruments Corp. A-1 NKR BASIC

Appendix A
Multiline Interface Messages

This appendix contains an interface message reference list, which describes
the mnemonics and messages that correspond to the interface functions.
These multiline interface messages are sent and received with ATN TRUE.

For more information on these messages, refer to the ANSI/IEEE Standard
488.1-1987, IEEE Standard Digital Interface for Programmable
Instrumentation .

Multiline Interface Messages Appendix A

NKR BASIC A-2 © National Instruments Corp.

Multiline Interface Messages

 Hex Oct Dec ASCII Msg Hex Oct Dec ASCII Msg

00 000 0 NUL 20 040 32 SP MLA0
01 001 1 SOH GTL 21 041 33 ! MLA1
02 002 2 STX 22 042 34 " MLA2
03 003 3 ETX 23 043 35 # MLA3
04 004 4 EOT SDC 24 044 36 $ MLA4
05 005 5 ENQ PPC 25 045 37 % MLA5
06 006 6 ACK 26 046 38 & MLA6
07 007 7 BEL 27 047 39 ' MLA7

08 010 8 BS GET 28 050 40 (MLA8
09 011 9 HT TCT 29 051 41) MLA9
0A 012 10 LF 2A 052 42 * MLA10
0B 013 11 VT 2B 053 43 + MLA11
0C 014 12 FF 2C 054 44 , MLA12
0D 015 13 CR 2D 055 45 - MLA13
0E 016 14 SO 2E 056 46 . MLA14
0F 017 15 SI 2F 057 47 / MLA15

10 020 16 DLE 30 060 48 0 MLA16
11 021 17 DC1 LLO 31 061 49 1 MLA17
12 022 18 DC2 32 062 50 2 MLA18
13 023 19 DC3 33 063 51 3 MLA19
14 024 20 DC4 DCL 34 064 52 4 MLA20
15 025 21 NAK PPU 35 065 53 5 MLA21
16 026 22 SYN 36 066 54 6 MLA22
17 027 23 ETB 37 067 55 7 MLA23

18 030 24 CAN SPE 38 070 56 8 MLA24
19 031 25 EM SPD 39 071 57 9 MLA25
1A 032 26 SUB 3A 072 58 : MLA26
1B 033 27 ESC 3B 073 59 ; MLA27
1C 034 28 FS 3C 074 60 < MLA28
1D 035 29 GS 3D 075 61 = MLA29
1E 036 30 RS 3E 076 62 > MLA30
1F 037 31 US 3F 077 63 ? UNL

Message Definitions

DCL Device Clear
GET Group Execute Trigger
GTL Go To Local
LLO Local Lockout
MLA My Listen Address

MSA My Secondary Address
MTA My Talk Address
PPC Parallel Poll Configure
PPD Parallel Poll Disable

Appendix A Multiline Interface Messages

© National Instruments Corp. A-3 NKR BASIC

Multiline Interface Messages

 Hex Oct Dec ASCII Msg Hex Oct Dec ASCII Msg

40 100 64 @ MTA0 60 140 96 ` MSA0,PPE
41 101 65 A MTA1 61 141 97 a MSA1,PPE
42 102 66 B MTA2 62 142 98 b MSA2,PPE
43 103 67 C MTA3 63 143 99 c MSA3,PPE
44 104 68 D MTA4 64 144 100 d MSA4,PPE
45 105 69 E MTA5 65 145 101 e MSA5,PPE
46 106 70 F MTA6 66 146 102 f MSA6,PPE
47 107 71 G MTA7 67 147 103 g MSA7,PPE

48 110 72 H MTA8 68 150 104 h MSA8,PPE
49 111 73 I MTA9 69 151 105 i MSA9,PPE
4A 112 74 J MTA10 6A 152 106 j MSA10,PPE
4B 113 75 K MTA11 6B 153 107 k MSA11,PPE
4C 114 76 L MTA12 6C 154 108 l MSA12,PPE
4D 115 77 M MTA13 6D 155 109 m MSA13,PPE
4E 116 78 N MTA14 6E 156 110 n MSA14,PPE
4F 117 79 O MTA15 6F 157 111 o MSA15,PPE

50 120 80 P MTA16 70 160 112 p MSA16,PPD
51 121 81 Q MTA17 71 161 113 q MSA17,PPD
52 122 82 R MTA18 72 162 114 r MSA18,PPD
53 123 83 S MTA19 73 163 115 s MSA19,PPD
54 124 84 T MTA20 74 164 116 t MSA20,PPD
55 125 85 U MTA21 75 165 117 u MSA21,PPD
56 126 86 V MTA22 76 166 118 v MSA22,PPD
57 127 87 W MTA23 77 167 119 w MSA23,PPD

58 130 88 X MTA24 78 170 120 x MSA24,PPD
59 131 89 Y MTA25 79 171 121 y MSA25,PPD
5A 132 90 Z MTA26 7A 172 122 z MSA26,PPD
5B 133 91 [MTA27 7B 173 123 { MSA27,PPD
5C 134 92 \ MTA28 7C 174 124 | MSA28,PPD
5D 135 93] MTA29 7D 175 125 } MSA29,PPD
5E 136 94 ^ MTA30 7E 176 126 ~ MSA30,PPD
5F 137 95 _ UNT 7F 177 127 DEL

PPE Parallel Poll Enable
PPU Parallel Poll Unconfigure
SDC Selected Device Clear
SPD Serial Poll Disable

SPE Serial Poll Enable
TCT Take Control
UNL Unlisten
UNT Untalk

© National Instruments Corp. B-1 NKR BASIC

Appendix B
Applications Monitor

This appendix introduces you to the Applications Monitor, a resident
program that is useful in debugging sequences of GPIB calls from within
your application.

The applications monitor can temporarily halt program execution (trap)
upon return from NI-488 functions that meet a condition specified by you.
You then can inspect function arguments, buffers, return values, GPIB
global variables, and other pertinent data. You can select the condition that
halts the program on every NI-488 function, on those functions that return
an error indication, or on those calls that are returned with selected bit
patterns in the GPIB status word.

If the desired condition is met, you will see a pop-up screen (Figure B-1)
that contains details of the call being trapped. In addition, you can view up
to 255 of the preceding calls to verify that the sequence of calls and their
arguments have occurred as intended.

Figure B-1. Applications Monitor Pop-Up Screen

Applications Monitor Appendix B

NKR BASIC B-2 © National Instruments Corp.

In many cases, you can omit explicit error-checking if you use the
applications monitor. If a program is expected to run without errors,
trapping on errors will cause the applications monitor to be invoked only if
an error occurs during a GPIB call. You can then take the action necessary
to fix the problem.

Currently, the applications monitor is available with all NI-488.2 MS-DOS
drivers.

Installing the Applications Monitor

The applications monitor is included on the distribution diskette as the file
APPMON.EXE . To install it, type the following command in response to
the DOS prompt:

APPMON

If the GPIB driver is not present or the applications monitor has been
previously installed, it will not load and an error message will be printed.

Once installed, the applications monitor will remain in memory until you
restart the system. Should you later decide that you no longer wish to
devote memory to the resident applications monitor, simply restart your
system; the applications monitor will no longer be loaded.

IBTRAP

Once installed, the applications monitor is run by the ibtrap function.
The applications monitor can trap on GPIB driver calls that have certain bits
set in the GPIB status word. The trap options are set by the special GPIB
driver call, ibtrap . This call can be made either from the application
program, or from DOS prompt using the special utility program called
IBTRAP.EXE .

With the function call and the DOS utility you select a mask , which
determines those events that will be trapped, and a monitor mode , which
selects what is displayed when a trap occurs.

Appendix B Applications Monitor

© National Instruments Corp. B-3 NKR BASIC

The exact syntax of the function call is dependent on the language you are
using. See the description of ibtrap in your language section for details
about how to include ibtrap calls in your application.

The utility program ibtrap can be used to set the trap mode from DOS.
Simply type ibtrap in response to the DOS prompt, specifying the
desired combination of the flags listed on the following pages.

Select one or more mask flags:

-ALL all GPIB calls

-ERR GPIB error

-TIMO timeout

-END GPIB board detected END or EOS

-SRQI SRQ on

-RQS device requesting service

-CMPL I/O completed

-LOK GPIB board is in Lockout State

-REM GPIB board is in Remote State

-CIC GPIB board is Controller-In-Charge

-ATN attention is asserted

-TACS GPIB board is Talker

-LACS GPIB board is Listener

-DTAS GPIB board is in Device Trigger State

-DCAS GPIB board is in Device Clear State

Applications Monitor Appendix B

NKR BASIC B-4 © National Instruments Corp.

Select only one monitor flag:

-OFF turns the monitor off. No recording or trapping occurs.

-REC instructs the monitor to record all GPIB driver calls but no
trapping occurs.

-DIS instructs the monitor to record all GPIB driver calls and
display whenever a trap condition exists.

Omitting either the mask or the monitor flags will leave its current
configuration unchanged. Invoking ibtrap without any flags will display
the valid flags and their current state. This has no effect on the applications
monitor configuration.

By selecting various flags for the mask and monitor parameters, you can
achieve a variety of trapping configurations. The following are some
examples:

IBTRAP -CIC -ATN -DIS record all GPIB driver calls and
display the applications monitor
whenever attention is asserted or the
GPIB board is Controller-in-Charge.

IBTRAP -SRQ -REC record all GPIB driver calls and set
the trap mask to trap when SRQ is on.
Do not display the applications
monitor when a trap condition exists.

IBTRAP -DIS record all GPIB driver calls and
display the applications monitor
whenever a trap condition exists. The
trap mask remains unchanged.

IBTRAP -OFF disable the applications monitor. No
recording or trapping is performed.

See Chapter 3 of this manual for the appropriate syntax to use in your
application program.

Appendix B Applications Monitor

© National Instruments Corp. B-5 NKR BASIC

Applications Monitor Options

When the applications monitor is displayed, you can view the parameters of
the current GPIB call, change the display and trap modes, and scan the
GPIB session summary. The applications monitor displays the following
information pertinent to the current GPIB call:

• Device symbolic device name.

• Function NI-488 call or function mnemonic and description.

• Value for functions that have a number as their second
parameter, this contains its value; otherwise, it is
undefined.

• Count for functions that have a count as their third
parameter, this contains its value; otherwise, it is
undefined.

• ibsta contains the GPIB status information.

• iberr contains the GPIB error information or the
previous value of the value parameter if no error
occurred.

• ibcnt contains the number of bytes transferred.

• Buffer for functions that have a buffer as a parameter, this
Value displays its contents. Each byte of the buffer is

shown with its index, character image, and ASCII
value.

• Status shows the state of the individual bits of ibsta . A
"*" indicates the bit is active. The active bits of the
trap mask are highlighted for easy identification.

• Error shows the state of the individual bits of iberr . A
"*" indicates the bit is active.

• Information contains any message concerning the current GPIB
call.

Note: All numbers are displayed in hex. Also, the applications monitor
is unable to record ibfind or ibtrap calls.

Applications Monitor Appendix B

NKR BASIC B-6 © National Instruments Corp.

Main Commands

When the main applications monitor screen is displayed, the following
command keys are available:

<F1> continue executing applications program

<F2> display session summary

<F3> exit to DOS

<F5> configure trap mask

<F6> configure monitor mode

<F7> hide/show monitor

<F8> clear session summary buffer

<F10> display command key list

<Cursor Up> scroll buffer up one character

<Cursor Down> scroll buffer down one character

<Page Up> scroll buffer up one page

<Page Down> scroll buffer down one page

<Home> scroll to beginning of buffer

<End> scroll to end of buffer

Appendix B Applications Monitor

© National Instruments Corp. B-7 NKR BASIC

Session Summary Screen

This session summary can be viewed by pressing F2. Once displayed, the
following keys can manipulate the display:

<Cursor Up> scrolls summary up one line

<Cursor Down> scrolls summary down one line

<Page Up> scrolls summary up one page

<Page Down> scrolls summary down one page

<Home> scrolls to the top of summary

<End> scrolls to the end of summary

<Escape > or <F2> exits the session summary display and returns to the
main applications monitor screen

Configuring the Trap Mask

Press <F5> to change the current configuration of the trap mask. This
action yields a popup menu with each of the status bits displayed along with
their current state (either ON or OFF). Press the up and down arrow keys to
highlight the desired bit and press <F1> to toggle its state. Press <Enter> to
record the changes. Pressing <Escape> cancels this action and leaves the
mask unchanged. Selecting all bits has the effect of trapping on every call,
while turning them all off causes no trapping to occur.

Configuring the Monitor Mode

Press <F6> to change the current configuration of the applications monitor
mode. This action yields a popup menu with the current mode
checkmarked. Use the up and down arrow keys to highlight the new mode
and press <Enter> to record the change. Press <Escape> to cancel this
action and leave the mode unchanged.

Applications Monitor Appendix B

NKR BASIC B-8 © National Instruments Corp.

Hiding and Showing the Applications Monitor

Press <F7> to hide the applications monitor and restore the contents of the
screen. By pressing <F7>, you can view program output written to the
screen, within the applications monitor, while the program is active.
Pressing <F7> again will restore the applications monitor.

Exiting Directly to DOS

Press <F3> to exit directly from your application back to DOS. This will
terminate your application and let you continue working from the DOS
prompt.

© National Instruments Corp. C-1 NKR BASIC

Appendix C
Customer Communication

For your convenience this appendix contains forms to help you gather the
information necessary to help us solve possible technical problems, as well
as a form you can use to comment on the product documentation.

By completing these forms before calling National Instruments, you will
save yourself time, and our applications engineers will be able to answer
your questions more accurately and efficiently. The forms contain the
information that the applications engineers need from you to help solve
your problem. Briefly jot down the information requested on the line after
each item.

Fax Technical Support
If you encounter any technical problems, please complete the fax and
configuration forms before requesting technical support by fax. You can
contact us by fax at any time at the following number:

(512) 794-5678

Telephone Technical Support
For best service by telephone, please complete the fax and configuration
forms, record any error messages, and be available at your computer when
you call for technical support. You can use the following numbers between
the hours of 8:00 a.m. and 5:30 p.m. (central time) to call the National
Instruments applications engineering department:

(512) 794-0100
(800) IEEE-488 (toll-free U.S. and Canada)

Documentation Comments
You can use the Documentation Comment Form for your comments about
our documents. Please mail or fax it to National Instruments.

Technical Support Fax Form

Technical support is available at any time by fax at (512) 794-5678. For
best results, provide as much information as possible. Include the
information from your configuration form. Use additional pages if
necessary.

Name

Company

Address

Fax () Phone ()

Computer brand

Model Processor

Operating system

Speed MHz RAM M

Display adapter

Mouse yes no

Other adapters installed

Hard disk capacity M Brand

Instruments used

National Instruments hardware product model

Revision

Configuration

(continues)

National Instruments software product

Version

Configuration

The problem is

List any error messages

The following steps will reproduce the problem

NKR BASIC Hardware and Software
Configuration Form

Record the settings and revisions of your hardware and software on the line
to the right of each item. Update this form each time you revise your
software or hardware configuration, and use this form as a reference for
your current configuration.

National Instruments Products

• NI-488.2 Software Revision Number on Disk

• Programming Language Interface Revision

• Type of National Instruments GPIB boards installed and their respective
hardware settings:

Board Type
Interrupt

Level
DMA

Channel
Base I/O
Address

(continues)

Other Products

• Computer Make and Model

• Microprocessor

• Clock Frequency

• Type of Monitor Card Installed

• DOS Version

• Programming Language/Version

• Type of other boards installed and their respective hardware settings:

Board Type
Base I/O
Address

Interrupt
Level

DMA
Channel

Documentation Comment Form

National Instruments encourages you to comment on the documentation
supplied with our products. This information helps us provide quality
products to meet your needs.

Title: NI-488 and NI-488.2 Subroutines for NKR BASIC

Edition Date: August 1992

Part Number: 320348-01

Please comment on the completeness, clarity, and organization of the
manual.

(continues)

If you find errors in the manual, please record the page numbers and
describe the errors.

Thank you for your help.

Name

Title

Company

Address

Phone ()

Mail to: Technical Publications
National Instruments Corporation
6504 Bridge Point Parkway, MS 53-02
Austin, TX 78730-5039

Fax to: Technical Publications
National Instruments Corporation
MS 53-02
(512) 794-5678

! NKR BASIC Example Program - Board Functions

 DECLARE integer ibsta, iberr, ibcnt ! GPIB status variables
 DECLARE integer brd0 ! Board number
 DECLARE integer mask ! Wait mask
 DECLARE integer v ! GPIB function parameter
 DECLARE integer m ! FOR loop index

! GPIBERR is an error subroutine that is called when a NI-488 function fails.
! DVMERR is an error subroutine that is called when the Fluke 45 does not
! have valid data to send.

 DECLARE sub gpiberr
 DECLARE sub dvmerr

 CALL cls_1
 PRINT "Read ten measurements from the Fluke 45..."
 PRINT

! Assign a unique identifier to board 0 and store in the variable BRD0.
! The name 'GPIB0' is the default name of board 0. If BRD0 is less
! than zero, call GPIBERR with an error message.

 LET bdname$ = "GPIB0"
 CALL ibfind(bdname$, brd0)
 IF brd0 < 0 then
 LET msg$ = "Ibfind Error"
 CALL gpiberr
 STOP
 END IF

! Send the Interface Clear (IFC) message. This action initializes the
! GPIB interface board and makes the interface board Controller-In-Charge.
! If the error bit ERR is set in IBSTA, call GPIBERR with an error
! message.

 CALL ibsic(brd0)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Ibsic Error"
 CALL gpiberr
 STOP
 END IF

! Turn on the Remote Enable (REN) signal. The device does not actually
! enter remote mode until it receives its listen address. If the
! error bit ERR is set in IBSTA, call GPIBERR with an error message.

 LET v = 1
 CALL ibsre(brd0, v)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Ibsre Error"
 CALL gpiberr
 STOP
 END IF

! Inhibit front panel control with the Local Lockout (LLO) command
! (hex 11). Place the Fluke 45 in remote mode by addressing it to listen
! (hex 21 or ASCII "!"). Send the Device Clear (DCL) message to clear
! internal device functions (hex 14). Address the GPIB interface board to
! talk (hex 20 or ASCII "@"). These commands can be found in Appendix A of
! the Software Reference Manual. If the error bit ERR is set in IBSTA,
! call GPIBERR with an error message.

 LET cmd$ = chr$(17) & "!" & chr$(20) & "@"
 CALL ibcmd(brd0, cmd$)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Ibcmd Error"
 CALL gpiberr
 STOP
 END IF

! Reset the Fluke 45 by issuing the reset (*RST) command. Instruct the
! Fluke 45 to measure the volts alternating current (VAC) using auto-ranging
! (AUTO), to wait for a trigger from the GPIB interface board (TRIGGER 2),
! and to assert the IEEE-488 Service Request line, SRQ, when the measurement
! has been completed and the Fluke 45 is ready to send the result (*SRE 16).
! If the error bit ERR is set in IBSTA, call GPIBERR with an error message.

 LET wrt$ = "*RST; VAC; AUTO; TRIGGER 2; *SRE 16"
 CALL ibwrt(brd0, wrt$)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Ibwrt Error"
 CALL gpiberr
 STOP
 END IF

! Initialize the accumulator of the ten measurements to zero.

 LET sum = 0.0

! Establish FOR loop to read the ten measuements. The variable m will
! serve as the counter of the FOR loop.

 FOR m = 1 to 10

 ! Address the Fluke 45 to listen (hex 21 or ASCII "!") and address the
 ! GPIB interface board to talk (hex 20 or ASCII "@"). These commands
 ! can be found in Appendix A of the Software Reference Manual. If
 ! the error bit ERR is set in IBSTA, call GPIBERR with an error
 ! message.

 LET cmd$ = "!" & "@"
 CALL ibcmd(brd0, cmd$)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Ibcmd Error"
 CALL gpiberr
 STOP
 END IF

 ! Trigger the Fluke by sending the trigger (GET) command (hex 08)
 ! message. If the error bit ERR is set in IBSTA, call GPIBERR
 ! with an error message.

 LET cmd$ = chr$(8)
 CALL ibcmd(brd0, cmd$)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Ibcmd Error"
 CALL gpiberr
 STOP
 END IF

 ! Request the triggered measurement by sending the instruction "VAL1?".
 ! If the error bit ERR is set IBSTA, call GPIBERR with an error
 ! message.

 LET wrt$ = "VAL1?"
 CALL ibwrt(brd0, wrt$)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Ibwrt Error"
 CALL gpiberr
 STOP
 END IF

 ! Wait for the Fluke 45 to assert the Service Request (SRQ) line
 ! or wait for the Fluke 45 to timeout(TIMO). The default timeout
 ! period is 10 seconds. SRQ is detected by bit position 12
 ! (hex 1000, SRQI). TIMO is detected by bit position 14 (hex 4000).
 ! These status bits are listed under the NI-488 function IBWAIT in
 ! the Software Reference Manual. If error bit ERR or the timeout
 ! bit TIMO is set in IBSTA, call GPIBERR with an error message.

 LET mask = 20480 ! SRQI or TIMO
 CALL ibwait(brd0, mask)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-16384) <> 0 then
 LET msg$ = "Ibwait Error"
 CALL gpiberr
 STOP
 END IF

 ! Serial poll the Fluke 45. Unaddress bus devices by sending the
 ! untalk (UNT) command (hex 5F or ASCII "_") and the unlisten (UNL)
 ! command (hex 3F or ASCII "?"). Send the Serial Poll Enable (SPE)
 ! command (hex 18) and the Fluke 45 talk address (hex 41 or ASCII "A").
 ! Address the GPIB interface board to listen (hex 20 or ASCII space).
 ! These commands can be found in Appendix A of the Software Reference
 ! Manual. If the error bit ERR is set in IBSTA, call GPIBERR
 ! with an error message.

 LET cmd$ = "_?" & chr$(24) & "A "
 CALL ibcmd(brd0, cmd$)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Ibcmd Error"
 CALL gpiberr
 STOP
 END IF

 ! Read the Fluke 45 serial poll status byte. If the error bit
 ! ERR is set in IBSTA, call GPIBERR with an error message.

 LET rd$ = repeat$(" ",1)
 CALL ibrd(brd0, rd$)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Ibrd Error"
 CALL gpiberr
 STOP
 END IF

 ! If the returned status byte is hex 50, the Fluke 45 has valid data to
 ! send; otherwise, it has a fault condition to report. If the status
 ! byte is not hex 50, call DVMERR with an error message.

 IF ord(rd$) <> 80 then
 LET msg$ = "Fluke 45 Error"
 CALL dvmerr
 STOP
 END IF

 ! Complete the serial poll by sending the Serial Poll Disable (SPD)
 ! command, hex 19. This command can be found in Appendix A of the
 ! Software Reference Manual. If the error bit ERR is set in IBSTA,
 ! call GPIBERR with an error message.

 LET cmd$ = chr$(25)
 CALL ibcmd(brd0, cmd$)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Ibcmd Error"
 CALL gpiberr
 STOP
 END IF

 ! Read the Fluke 45 measurement. If the error bit ERR is set in
 ! IBSTA, call GPIBERR with an error message.

 LET rd$ = repeat$(" ",10)
 CALL ibrd(brd0, rd$)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "IBRD Error"
 CALL gpiberr
 STOP
 END IF

 ! Print the measurement received from the Fluke 45.

 LET rd$ = Rd$(1:IBCNT-1)
 PRINT "Reading: "; Rd$
 PRINT

 ! Convert the variable RD to its numeric value and add to the
 ! accumulator.

 LET sum = sum + val(Rd$)

 NEXT m ! Continue FOR loop until 10 measurements are read.

! Print the average of the ten readings.

 PRINT "The average of the 10 readings is ", sum/10

! Call the ibonl function to disable the hardware and software.

 LET v = 0
 CALL ibonl(brd0, v)

! ==
! Subroutine GPIBERR
! This subroutine will notify you that a NI-488.2 function failed by
! printing an error message. The status variable IBSTA will also be
! printed in hexadecimal along with the mnemonic meaning of the bit position.
! The status variable IBERR will be printed in decimal along with the
! mnemonic meaning of the decimal value. The status variable IBCNT will
! be printed in decimal.
!
! The NI-488 function IBONL is called to disable the hardware and software.
! ==
SUB gpiberr

 PRINT msg$

 PRINT "ibsta = &H"; hex$(ibsta_i)

 IF b_AND(ibsta_i,-32768) <> 0 then PRINT " ERR"
 IF b_AND(ibsta_i,16384) <> 0 then PRINT " TIMO"
 IF b_AND(ibsta_i,8192) <> 0 then PRINT " END"
 IF b_AND(ibsta_i,4096) <> 0 then PRINT " SRQI"
 IF b_AND(ibsta_i,2048) <> 0 then PRINT " RQS"
 IF b_AND(ibsta_i,256) <> 0 then PRINT " CMPL"
 IF b_AND(ibsta_i,128) <> 0 then PRINT " LOK"
 IF b_AND(ibsta_i,64) <> 0 then PRINT " REM"
 IF b_AND(ibsta_i,32) <> 0 then PRINT " CIC"
 IF b_AND(ibsta_i,16) <> 0 then PRINT " ATN"
 IF b_AND(ibsta_i,8) <> 0 then PRINT " TACS"
 IF b_AND(ibsta_i,4) <> 0 then PRINT " LACS"
 IF b_AND(ibsta_i,2) <> 0 then PRINT " DTAS"
 IF b_AND(ibsta_i,1) <> 0 then PRINT " DCAS"
 PRINT

 PRINT "iberr = ", iberr
 IF iberr = 0 then PRINT " EDVR <DOS Error>"
 IF iberr = 1 then PRINT " ECIC <Not CIC>"
 IF iberr = 2 then PRINT " ENOL <No Listener>"
 IF iberr = 3 then PRINT " EADR <Address error>"
 IF iberr = 4 then PRINT " EARG <Invalid argument>"
 IF iberr = 5 then PRINT " ESAC <Not Sys Ctrlr>"
 IF iberr = 6 then PRINT " EABO <Op. aborted>"
 IF iberr = 7 then PRINT " ENEB <No GPIB board>"
 IF iberr = 10 then PRINT " EOIP <Async I/O in prg>"
 IF iberr = 11 then PRINT " ECAP <No capability>"
 IF iberr = 12 then PRINT " EFSO <File sys. error>"
 IF iberr = 14 then PRINT " EBUS <Command error>"

 IF iberr = 15 then PRINT " ESTB <Status byte lost>"
 IF iberr = 16 then PRINT " ESRQ <SRQ stuck on>"
 IF iberr = 20 then PRINT " ETAB <Table Overflow>"
 PRINT

 PRINT "ibcnt = ", ibcnt

! Call the IBONL function to disable the hardware and software.

 LET v = 0
 CALL ibonl(brd0, v)

END SUB

! ==
! Subroutine DVMERR
! This subroutine will notify you that the Fluke 45 returned an invalid
! serial poll response byte. The error message will be printed along with
! the serial poll response byte.
!
! The NI-488 function IBONL is called to disable the hardware and software.
! ==
SUB dvmerr

 PRINT msg$

 PRINT "Status Byte = ", ord(rd$)

! Call the IBONL function to disable the hardware and software.

 LET v = 0
 CALL ibonl(brd0, v)

END SUB

END

! NKR BASIC Example Program - Device Functions

 DECLARE integer ibsta, iberr, ibcnt ! GPIB status variables
 DECLARE integer dvm ! Device number
 DECLARE integer mask ! Wait mask
 DECLARE integer spr ! Serial poll response
 DECLARE integer v ! GPIB function parameter
 DECLARE integer m ! FOR loop index

! GPIBERR is an error subroutine that is called when a NI-488 function fails.
! DVMERR is an error subroutine that is called when the Fluke 45 does not
! have valid data to send.

 DECLARE sub gpiberr
 DECLARE sub dvmerr

 CALL cls_1
 PRINT "Read ten measurements from the Fluke 45..."
 PRINT

! Assign a unique identifier to the Fluke 45 and store in the variable
! DVM. The name "DVM" is the name you configured for the Fluke 45 using
! IBCONF.EXE. If DVM is less than zero, call GPIBERR with an error message.

 LET devname$ = "DVM"
 CALL ibfind (devname$,dvm)
 IF dvm < 0 then
 LET msg$ = "Ibfind Error"
 CALL gpiberr
 STOP
 END IF

! Clear the internal or device functions of the Fluke 45. If the error bit
! ERR is set in IBSTA, call GPIBERR with an error message.

 CALL ibclr (dvm)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Ibclr Error"
 CALL gpiberr
 STOP
 END IF

! Reset the Fluke 45 by issuing the reset (*RST) command. Instruct the
! Fluke 45 to measure the volts alternating current (VAC) using auto-ranging
! (AUTO), to wait for a trigger from the GPIB interface board (TRIGGER 2),
! and to assert the IEEE-488 Service Request line, SRQ, when the measurement
! has been completed and the Fluke 45 is ready to send the result (*SRE 16).
! If the error bit ERR is set in IBSTA, call GPIBERR with an error message.

 LET wrt$ = "*RST; VAC; AUTO; TRIGGER 2; *SRE 16"
 CALL ibwrt (dvm,wrt$)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Ibwrt Error"
 CALL gpiberr
 STOP
 END IF

! Initialize the accumulator of the ten measurements to zero.

 LET sum = 0.0

! Establish FOR loop to read the ten measuements. The variable m will
! serve as the counter of the FOR loop.

 FOR m = 1 to 10

 ! Trigger the Fluke 45. If the error bit ERR is set in IBSTA,
 ! call GPIBERR with an error message.

 CALL ibtrg (dvm)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Ibtrg Error"
 CALL gpiberr
 STOP
 END IF

 ! Request the triggered measurement by sending the instruction
 ! "VAL1?". If the error bit ERR is set in IBSTA, call GPIBERR
 ! with an error message.

 LET wrt$ = "VAL1?"
 call ibwrt(dvm, wrt$)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Ibwrt Error"
 CALL gpiberr
 STOP
 END IF

 ! Wait for the Fluke 45 to request service (RQS) or wait for the
 ! Fluke 45 to timeout(TIMO). The default timeout period is 10 seconds.
 ! RQS is detected by bit position 11 (hex 800). TIMO is detected
 ! by bit position 14 (hex 4000). These status bits are listed under
 ! the NI-488 function IBWAIT in the Software Reference Manual. If the
 ! error bit ERR or the timeout bit TIMO is set in IBSTA, call GPIBERR
 ! with an error message.

 LET mask = 18432 ! RQS or TIMO
 call ibwait (dvm,mask)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Ibwait Error"
 CALL gpiberr
 STOP
 END IF

 ! Read the Fluke 45 serial poll status byte. If the error bit
 ! ERR is set in IBSTA, call GPIBERR with an error message.

 call ibrsp (dvm,spr)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Ibrsp Error"
 CALL gpiberr
 STOP
 END IF

 ! If the returned status byte is hex 50, the Fluke 45 has valid data to
 ! send; otherwise, it has a fault condition to report. If the status
 ! byte is not hex 50, call DVMERR with an error message.

 IF spr <> 80 then
 LET msg$ = "Fluke 45 Error"
 CALL dvmerr
 STOP
 END IF

 ! Read the Fluke 45 measurement. If the error bit ERR is set in
 ! IBSTA, call GPIBERR with an error message.

 LET rd$ = repeat$(" ",10)
 CALL ibrd (dvm,rd$)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Ibrd Error"
 CALL gpiberr
 STOP
 END IF

 ! Print the measurement received from the Fluke 45.

 LET rd$ = Rd$(1:IBCNT-1)
 PRINT "Reading: "; Rd$
 PRINT

 ! Convert the variable RD to its numeric value and add to the
 ! accumulator.

 LET sum = sum + val(Rd$)

 NEXT m ! Continue FOR loop until 10 measurements are read.

! Print the average of the ten readings.

 PRINT "The average of the 10 readings is ", sum/10

! Call the ibonl function to disable the hardware and software.

 LET v = 0
 CALL ibonl(dvm, v)

! ==
! Subroutine GPIBERR
! This subroutine will notify you that a NI-488.2 function failed by
! printing an error message. The status variable IBSTA will also be
! printed in hexadecimal along with the mnemonic meaning of the bit position.
! The status variable IBERR will be printed in decimal along with the
! mnemonic meaning of the decimal value. The status variable IBCNT will
! be printed in decimal.
!
! The NI-488 function IBONL is called to disable the hardware and software.
! ==

SUB gpiberr
 PRINT msg$

 PRINT "ibsta = &H"; hex$(ibsta_i)

 IF b_AND(ibsta_i, -32768) <> 0 then PRINT " ERR"
 IF b_AND(ibsta_i, 16384) <> 0 then PRINT " TIMO"
 IF b_AND(ibsta_i, 8192) <> 0 then PRINT " END"
 IF b_AND(ibsta_i, 4096) <> 0 then PRINT " SRQI"
 IF b_AND(ibsta_i, 2048) <> 0 then PRINT " RQS"
 IF b_AND(ibsta_i, 256) <> 0 then PRINT " CMPL"
 IF b_AND(ibsta_i, 128) <> 0 then PRINT " LOK"
 IF b_AND(ibsta_i, 64) <> 0 then PRINT " REM"
 IF b_AND(ibsta_i, 32) <> 0 then PRINT " CIC"
 IF b_AND(ibsta_i, 16) <> 0 then PRINT " ATN"
 IF b_AND(ibsta_i, 8) <> 0 then PRINT " TACS"
 IF b_AND(ibsta_i, 4) <> 0 then PRINT " LACS"
 IF b_AND(ibsta_i, 2) <> 0 then PRINT " DTAS"
 IF b_AND(ibsta_i, 1) <> 0 then PRINT " DCAS"
 PRINT

 PRINT "iberr = ", iberr
 IF iberr = 0 then PRINT " EDVR <DOS Error>"
 IF iberr = 1 then PRINT " ECIC <Not CIC>"
 IF iberr = 2 then PRINT " ENOL <No Listener>"
 IF iberr = 3 then PRINT " EADR <Address error>"
 IF iberr = 4 then PRINT " EARG <Invalid argument>"
 IF iberr = 5 then PRINT " ESAC <Not Sys Ctrlr>"
 IF iberr = 6 then PRINT " EABO <Op. aborted>"
 IF iberr = 7 then PRINT " ENEB <No GPIB board>"
 IF iberr = 10 then PRINT " EOIP <Async I/O in prg>"
 IF iberr = 11 then PRINT " ECAP <No capability>"
 IF iberr = 12 then PRINT " EFSO <File sys. error>"
 IF iberr = 14 then PRINT " EBUS <Command error>"
 IF iberr = 15 then PRINT " ESTB <Status byte lost>"
 IF iberr = 16 then PRINT " ESRQ <SRQ stuck on>"
 IF iberr = 20 then PRINT " ETAB <Table Overflow>"
 PRINT

 PRINT "ibcnt = ", ibcnt

! Call the IBONL function to disable the hardware and software.

 LET v = 0
 CALL ibonl(dvm, v)

END SUB

! ==
! Subroutine DVMERR
! This subroutine will notify you that the Fluke 45 returned an invalid
! serial poll response byte. The error message will be printed along with
! the serial poll response byte.
!
! The NI-488 function IBONL is called to disable the hardware and software.
! ==
SUB dvmerr

 PRINT msg$
 LET spr_i = spr
 PRINT "Returned Byte = &H"; hex$(spr_i)

! Call the IBONL function to disable the hardware.

 LET v = 0
 CALL ibonl (dvm, v)

END SUB

END

NI-488.2 subroutines 1

! NKR BASIC Example Program - NI-488.2 Subroutines

OPTION BASE 0

 DECLARE integer ibsta, iberr, ibcnt ! GPIB status variables
 DECLARE integer instruments(32) ! Array of primary addresses
 DECLARE integer boardindex ! Board index
 DECLARE integer result(32) ! Array of listen addresses
 DECLARE integer num_listeners ! Number of listeners on GPIB
 DECLARE integer limit ! Maximum number of listeners on GPIB
 DECLARE integer mask ! Wait mask
 DECLARE integer k ! FOR loop index
 DECLARE integer v ! GPIB function parameter
 DECLARE integer SRQasserted ! Set to indicate if SRQ asserted
 DECLARE integer fluke ! Primary address of Fluke 45
 DECLARE integer statusByte ! Serial poll response byte
 DECLARE integer NOADDR ! Terminate address list
 DECLARE integer NLend ! Send NL with EOI after transfer
 DECLARE integer STOPend ! Stop the read on EOI

! Constants used in this application program.

 LET NOADDR = -1
 LET NLend = 1
 LET STOPend = 256
 LET boardindex = 0

 CALL cls_1

! Our board needs to be the Controller-In-Charge in order to find all
! listeners on the GPIB. To accomplish this, the function SendIFC is
! called. If the error bit ERR is set in IBSTA, call GPIBERR with
! an error message.

 CALL SendIFC(boardindex)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "SendIFC Error"
 CALL gpiberr
 STOP
 END IF

! Create an array containing all valid GPIB primary addresses. This
! array (INSTRUMENTS) will be given to the function FindLstn to find all
! listeners. The constant NOADDR, defined in DECL.H, signifies the end
! of the array.

 FOR k = 0 to 30
 LET instruments(k) = k
 NEXT k

 LET instruments(31) = NOADDR

! Print message to tell user that the program is searching for all active
! listeners. Find all of the listeners on the bus. Store the listen
! addresses in the array RESULT. If the error bit ERR is set in IBSTA,
! call GPIBERR with an error message.

NI-488.2 subroutines 2

 PRINT "Finding all listeners on the bus..."
 LET limit = 31

 CALL FindLstn (boardindex, instruments(0), result(0), limit)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "FindLstn Error"
 CALL gpiberr
 STOP
 END IF

! Assign the value of IBCNT to the variable NUM_LISTENERS. The GPIB
! interface board is detected as a listener on the bus; however, it is
! not included in the final count of the number of listeners. Print
! the number of listeners found.

 LET num_listeners = ibcnt - 1
 PRINT "No. of instruments found = ", num_listeners

! Send the *IDN? command to each device that was found. Your GPIB interface
! board is at address 0 by default. The board does not respond to *IDN?, so
! skip it.
!
! Establish a FOR loop to determine if the Fluke 45 is a listener on the
! GPIB. The variable LOOP will serve as a counter for the FOR loop and
! as the index to the array RESULT.

 FOR k = 1 to num_listeners

 ! Send the identification query to each listen address in the
 ! array RESULT. The constant NLend, defined in DECL.H, instructs
 ! the function Send to append a linefeed character with EOI asserted
 ! to the end of the message. If the error bit ERR is set in IBSTA,
 ! call GPIBERR with an error message.

 LET cmd$ = "*IDN?"
 CALL Send(boardindex, result(k), cmd$, NLend)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Send Error"
 CALL gpiberr
 STOP
 END IF

 ! Read the name identification response returned from each device.
 ! Store the response in the array BUFFER. The constant STOPend,
 ! defined in DECL.H, instructs the function Receive to terminate the
 ! read when END is detected. If the error bit ERR is set in IBSTA,
 ! call GPIBERR with an error message.

 LET READING$ = Repeat$(" ",10)
 CALL Receive(boardindex,result(k),Reading$, STOPend)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Receive Error"
 CALL gpiberr
 STOP
 END IF

NI-488.2 subroutines 3

 ! The low byte of the listen address is the primary address.
 ! Assign the variable PAD the primary address of the device.
 ! The macro GetPAD, defined in DECL.H, returns the low byte
 ! of the listen address.

 LET num_i = result(k)
 LET pad_i = b_AND(num_i,255)

 ! Print the measurement received from the Fluke 45.

 LET rd$ = reading$(1:IBCNT-1)
 PRINT "The instrument at address ";pad_i; " is: ";rd$

 ! Determine if the name identification is the Fluke 45. If it is
 ! the FLuke 45, assign PAD to FLUKE, print message that the
 ! FLuke 45 has been found, call the function FOUND, and terminate
 ! FOR loop.

 IF left$(Reading$, 9)="FLUKE, 45" then GOSUB 2000
 NEXT k

 PRINT "Did not find the Fluke!"
 GOSUB 4000

! Device Found.

2000
 PRINT "**** We found the Fluke 45 ****"
 LET fluke = result(k)

! Reset the Fluke 45 using the functions DevClear and Send.
!
! DevClear will send the GPIB Selected Device Clear (SDC) command message
! to the Fluke 45. If the error bit ERR is set in IBSTA, call GPIBERR with
! an error message.

 CALL DevClear (boardindex, fluke)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "DevClear Error"
 CALL gpiberr
 STOP
 END IF

! Use the function Send to send the IEEE-488.2 reset command (*RST)
! to the Fluke 45. The constant NLend, defined in DECL.H, instructs
! the function Send to append a linefeed character with EOI asserted
! to the end of the message. If the error bit ERR is set in IBSTA,
! call GPIBERR with an error message.

 LET cmd$ = "*RST"
 CALL Send(boardindex, fluke, cmd$, NLend)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Send *RST Error"

NI-488.2 subroutines 4

 CALL gpiberr
 STOP
 END IF

! Use the function Send to send device configuration commands to the
! Fluke 45. Instruct the Fluke 45 to measure volts alternating current
! (VAC) using auto-ranging (AUTO), to wait for a trigger from the GPIB
! interface board (TRIGGER 2), and to assert the IEEE-488 Service Request
! line, SRQ, when the measurement has been completed and the Fluke 45 is
! ready to send the result (*SRE 16). If the error bit ERR is set in
! IBSTA, call GPIBERR with an error message.

 LET cmd$ = "VAC; AUTO; TRIGGER 2; *SRE 16"
 CALL Send(boardindex, fluke, cmd$, NLend)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Send setup Error"
 CALL gpiberr
 STOP
 END IF

! Initialized the accumulator of the ten measurements to zero.

 LET sum = 0

! Establish FOR loop to read the ten measuements. The variable m will
! serve as the counter of the FOR loop.

 FOR m = 1 to 10

 ! Trigger the Fluke 45 by sending the trigger command (*TRG) and
 ! request a measurement by sending the command "VAL1?". If the
 ! error bit ERR is set in IBSTA, call GPIBERR with an error message.

 LET cmd$ = "*TRG; VAL1?"
 CALL Send(boardindex, fluke, cmd$, NLend)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Send trigger Error"
 CALL gpiberr
 STOP
 END IF

 ! Wait for the Fluke 45 to assert SRQ, meaning it is ready to send
 ! a measurement. If SRQ is not assserted within the timeout period,
 ! call GPIBERR with an error message. The timeout period by default
 ! is 10 seconds.

 CALL WaitSRQ(boardindex, SRQasserted)
 IF SRQasserted = 0 then
 LET msg$ = "SRQ is not asserted. The Fluke is not ready."
 CALL gpiberr
 STOP
 END IF

NI-488.2 subroutines 5

 ! Read the serial poll status byte of the FLuke 45. If the error
 ! bit ERR is set in IBSTA, call GPIBERR with an error message.

 CALL ReadStatusByte(boardindex, fluke, statusByte)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "ReadStatusByte Error"
 CALL gpiberr
 STOP
 END IF

 ! Check if the Message Available Bit (bit 4) of the return status
 ! byte is set. If this bit is not set, print the status byte and
 ! call GPIBERR with an error message.

 LET mask = 16
 LET status_i = statusByte
 IF b_AND(status_i,mask) <> 16 then
 LET msg$ = "Improper Status Byte"
 CALL gpiberr
 PRINT "Status Byte = "; statusByte
 STOP
 END IF

 ! Read the Fluke 45 measurement. Store the measurement in the
 ! variable BUFFER. The constant STOPend, defined in DECL.H,
 ! instructs the function Receive to terminate the read when END
 ! is detected. If the error bit ERR is set in IBSTA, call
 ! GPIBERR with an error message.

 CALL Receive (boardindex, fluke, Reading$, STOPend)
 LET ibsta_i = ibsta
 IF b_AND(ibsta_i,-32768) <> 0 then
 LET msg$ = "Receive Error"
 CALL gpiberr
 STOP
 END IF

 ! Use the null character to mark the end of the data received
 ! in the array BUFFER. Print the measurement received from the
 ! Fluke 45.

 LET rd$ = Reading$(1:IBCNT-1)
 PRINT "Reading : ";rd$
 PRINT

 ! Convert the variable BUFFER to its numeric value and add to the
 ! accumulator.

 LET sum = sum + val(Rd$)
 NEXT m

 PRINT "The average of the 10 readings is ", sum/10

! Call the IBONL function to disable the hardware and software.
4000
 LET v = 0
 CALL Ibonl (boardindex,v)

NI-488.2 subroutines 6

! ==
! Subroutine GPIBERR
! This function will notify you that a NI-488.2 function failed by
! printing an error message. The status variable IBSTA will also be
! printed in hexadecimal along with the mnemonic meaning of the bit position.
! The status variable IBERR will be printed in decimal along with the
! mnemonic meaning of the decimal value. The status variable IBCNT will
! be printed in decimal.
!
! The NI-488 function IBONL is called to disable the hardware and software.
! ==
SUB gpiberr
 PRINT msg$

 PRINT "ibsta = &H"; hex$(ibsta_i)

 IF b_AND(ibsta_i, -32768) <> 0 then PRINT " ERR"
 IF b_AND(ibsta_i, 16384) <> 0 then PRINT " TIMO"
 IF b_AND(ibsta_i, 8192) <> 0 then PRINT " END"
 IF b_AND(ibsta_i, 4096) <> 0 then PRINT " SRQI"
 IF b_AND(ibsta_i, 2048) <> 0 then PRINT " RQS"
 IF b_AND(ibsta_i, 256) <> 0 then PRINT " CMPL"
 IF b_AND(ibsta_i, 128) <> 0 then PRINT " LOK"
 IF b_AND(ibsta_i, 64) <> 0 then PRINT " REM"
 IF b_AND(ibsta_i, 32) <> 0 then PRINT " CIC"
 IF b_AND(ibsta_i, 16) <> 0 then PRINT " ATN"
 IF b_AND(ibsta_i, 8) <> 0 then PRINT " TACS"
 IF b_AND(ibsta_i, 4) <> 0 then PRINT " LACS"
 IF b_AND(ibsta_i, 2) <> 0 then PRINT " DTAS"
 IF b_AND(ibsta_i, 1) <> 0 then PRINT " DCAS"
 PRINT

 PRINT "iberr = ", iberr
 IF iberr = 0 then PRINT " EDVR <DOS Error>"
 IF iberr = 1 then PRINT " ECIC <Not CIC>"
 IF iberr = 2 then PRINT " ENOL <No Listener>"
 IF iberr = 3 then PRINT " EADR <Address error>"
 IF iberr = 4 then PRINT " EARG <Invalid argument>"
 IF iberr = 5 then PRINT " ESAC <Not Sys Ctrlr>"
 IF iberr = 6 then PRINT " EABO <Op. aborted>"
 IF iberr = 7 then PRINT " ENEB <No GPIB board>"
 IF iberr = 10 then PRINT " EOIP <Async I/O in prg>"
 IF iberr = 11 then PRINT " ECAP <No capability>"
 IF iberr = 12 then PRINT " EFSO <File sys. error>"
 IF iberr = 14 then PRINT " EBUS <Command error>"
 IF iberr = 15 then PRINT " ESTB <Status byte lost>"
 IF iberr = 16 then PRINT " ESRQ <SRQ stuck on>"
 IF iberr = 20 then PRINT " ETAB <Table Overflow>"
 PRINT

 PRINT "ibcnt = ", ibcnt

! Call the IBONL function to disable the hardware and software.

 LET v = 0
 CALL ibonl (boardindex,v)

END SUB

END

	NI-488 ®and NI-488.2 ™Subroutines for NKR BASIC
	Limited Warranty
	Copyright
	Trademarks

	Preface
	Organization of This Manual
	Conventions Used in This Manual
	Abbreviations
	Acronyms
	Mnemonics
	Related Documents
	Customer Communication

	Contents
	Chapter 1 General Information
	NKR BASIC Files
	Programming Preparations
	Testing the Status Word
	Count Variable – ibcnt
	NKR BASIC NI-488 I/O Calls
	Using the NI-488.2 Routine and NI-488 Function Examples
	Dynamic Reconfiguration of Board and Device Characteristics

	Chapter 2 NI-488.2 Routine Descriptions
	AllSpoll
	DevClear
	DevClearList
	EnableLocal
	EnableRemote
	FindLstn
	FindRQS
	PassControl
	PPoll
	PPollConfig
	PPollUnconfig
	RcvRespMsg
	ReadStatusByte
	Receive
	ReceiveSetup
	ResetSys
	Send
	SendCmds
	SendDataBytes
	SendIFC
	SendList
	SendLLO
	SendSetup
	SetRWLS
	TestSRQ
	TestSys
	Trigger
	TriggerList
	WaitSRQ
	NI–488.2 Programming Example
	NKR BASIC Example Program – NI-488.2 Routines

	Chapter 3 NI-488 Function Descriptions
	IBBNA
	IBCAC
	IBCLR
	IBCMD
	IBCMDA
	IBCONFIG
	IBDEV
	IBDMA
	IBEOS
	IBEOT
	IBFIND
	IBGTS
	IBIST
	IBLINES
	IBLN
	IBLOC
	IBONL
	IBPAD
	IBPCT
	IBPPC
	IBRD
	IBRDA
	IBRDF
	IBRDI
	IBRDIA
	IBRPP
	IBRSC
	IBRSP
	IBRSV
	IBSAD
	IBSIC
	IBSRE
	IBSTOP
	IBTMO
	IBTRAP
	IBTRG
	IBWAIT
	IBWRT
	IBWRTA
	IBWRTF
	IBWRTI
	IBWRTIA
	GPIB Programming Examples
	NKR BASIC Example Program – Device Functions
	NKR BASIC Example Program – Board Functions

	Appendix A Multiline Interface Messages
	Appendix B Applications Monitor
	Installing the Applications Monitor
	IBTRAP
	Applications Monitor Options
	Main Commands
	Session Summary Screen
	Configuring the Trap Mask
	Configuring the Monitor Mode
	Hiding and Showing the Applications Monitor
	Exiting Directly to DOS

	Appendix C Customer Communication
	New Example Programs
	NKR BASIC Example Program - Board Functions
	NKR BASIC Example Program - Device Functions
	NKR BASIC Example Program - NI-488.2 Subroutines

	Figure
	Figure B-1. Applications Monitor Pop-Up Screen

	Tables
	Table 1-1. NKR BASIC NI-488.2 Routines
	Table 1-2. NKR BASIC NI-488 Functions
	Table 1-3. Functions That Alter Default Characteristics
	Table 3-1. Board Configuration Options
	Table 3-2. Device Configuration Options
	Table 3-3. Data Transfer Termination Method
	Table 3-4. Parallel Poll Commands
	Table 3-5. Timeout Code Values
	Table 3-6. IBTRAP Mode
	Table 3-7. IBTRAP Errors
	Table 3-8. Wait Mask Layout

